
Modulated Graph Convolutional Network for 3D Human Pose Estimation

Zhiming Zou and Wei Tang*

University of Illinois at Chicago
{zzou6, tangw}@uic.edu

Abstract

The graph convolutional network (GCN) has recently
achieved promising performance of 3D human pose esti-
mation (HPE) by modeling the relationship among body
parts. However, most prior GCN approaches suffer from
two main drawbacks. First, they share a feature transfor-
mation for each node within a graph convolution layer. This
prevents them from learning different relations between dif-
ferent body joints. Second, the graph is usually defined ac-
cording to the human skeleton and is suboptimal because
human activities often exhibit motion patterns beyond the
natural connections of body joints. To address these limita-
tions, we introduce a novel Modulated GCN for 3D HPE.
It consists of two main components: weight modulation
and affinity modulation. Weight modulation learns different
modulation vectors for different nodes so that the feature
transformations of different nodes are disentangled while
retaining a small model size. Affinity modulation adjusts
the graph structure in a GCN so that it can model addi-
tional edges beyond the human skeleton. We investigate
several affinity modulation methods as well as the impact
of regularizations. Rigorous ablation study indicates both
types of modulation improve performance with negligible
overhead. Compared with state-of-the-art GCNs for 3D
HPE, our approach either significantly reduces the estima-
tion errors, e.g., by around 10%, while retaining a small
model size or drastically reduces the model size, e.g., from
4.22M to 0.29M (a 14.5× reduction), while achieving com-
parable performance. Results on two benchmarks show
our Modulated GCN outperforms some recent states of the
art. Our code is available at https://github.com/
ZhimingZo/Modulated-GCN .

1. Introduction

3D human pose estimation (HPE) aims to accurately re-
cover the 3D locations of body joints in the camera coordi-
nate system from a single image. It plays an important role
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Figure 1. Comparison of the performance and model size be-
tween the proposed Modulated GCN and state-of-the-art GCNs
designed for 3D HPE, i.e., SemGCN [57], Local-to-Global Net
[3], and Weight Unsharing [28]. A lower MPJPE value indicates
better performance. All methods are evaluated on Human3.6M
[15] with ground truth 2D joints as input.

in several valuable applications such as human-computer
interaction, action recognition, and intelligent surveillance.
However, 3D HPE remains a challenging problem due to its
ill-posed nature. Multiple valid 3D body configurations can
be projected to the same 2D pose in the image space.

State-of-the-art 3D HPE systems are built on deep neu-
ral networks [20] due to their strong capability to learn ef-
fective feature representations from data. Some approaches
[61, 35, 44, 37, 43, 54, 23, 4] regress 3D joint coordinates
or heat maps directly from a monocular image via a con-
volutional neural network (CNN) [21, 19]. Recent works
decompose the problem into two subtasks, i.e., 2D HPE fol-
lowed by 2D-to-3D pose lifting [31, 3, 6, 57, 38, 30, 50, 52,
5, 63, 29, 48]. For example, Martinez et al. [31] construct
a simple fully connected network taking only 2D keypoints
as input and yield promising 3D HPE performance.

Recently, graph convolutional networks (GCNs) have
been applied for 3D HPE [57, 3, 6, 28] to model the cor-
relation between body joints. They repeatedly transform
and aggregate features of neighboring nodes to obtain more
powerful feature representations. Their superior perfor-
mance over the fully connected networks proves that rela-
tional reasoning is critical to mitigate the depth ambiguity.

However, most previous GCNs suffer from two limita-
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tions. First, they share a feature transformation for each
node within a graph convolution layer. Since it is the fea-
ture transformation that captures the relations between each
node and their neighboring nodes, this kind of weight shar-
ing prevents the GCN from learning diverse relational pat-
terns between different body joints. Recently, Liu et al. [28]
solve this problem via weight unsharing and apply different
feature transformations to different nodes before aggregat-
ing their features. However, it significantly increases the
model size, i.e., by a factor of the number of body joints
(typically 16 or 17). Second, the graph in a GCN defines the
pairwise correlations between body joints, and it is usually
defined according to the human skeleton. However, human
activities often exhibit motion patterns beyond the natural
connections of body joints, e.g., the strong correlation be-
tween arms and legs for a walking or running person. It
remains unclear what kind of graph structure is optimal for
2D-to-3D pose lifting.

This paper introduces a novel approach, termed the Mod-
ulated GCN, to resolve these two difficult issues. It consists
of two main components: weight modulation and affinity
modulation. Unlike weight unsharing [28] which applies
different weight matrices to different nodes, weight mod-
ulation uses a shared weight matrix as in the vanilla GCN
but learns different modulation vectors for different nodes.
By manipulating the latent weight space, the feature trans-
formations of different nodes are disentangled. This enables
the graph convolution to learn diverse relationships between
different body joints while retaining a small model size.
Affinity modulation means to adjust the graph structure in
a GCN so that each graph convolution layer focuses on ad-
ditional edges beyond the human skeleton. This is achieved
by learning a modulation matrix added to the human skele-
ton affinity matrix. However, the unconstrained modulation
can be suboptimal as the correlation patterns of body joints
exhibit certain properties. This motivates us to study what
kind of prior should be enforced on the affinity modulation.
Specifically, we have an in-depth investigation on whether
symmetry, sparsity and low-rank constraints help improve
the generalization ability.

In sum, the contribution of this paper is threefold.

• We introduce weight modulation to disentangle the
feature transformations of different nodes. It enables
the GCN to learn diverse relational patterns between
different body joints while maintaining a small model
size.

• We investigate different affinity modulation methods
as well as the impact of different regularizations. Our
optimal affinity modulation helps each graph convolu-
tion layer focus on additional edges beyond the skele-
ton graph.

• Compared with state-of-the-art GCN methods, our

Modulated GCN addresses the dilemma between the
accuracy and model complexity, as shown in Fig.
1. It significantly reduces the model size of the lat-
est Weight Unsharing GCN [28], i.e., from 4.22M to
0.29M (a 14.5× reduction), while achieving similar
accuracy. It reduces the estimation error of Semantic
GCN [57] by around 10% (9.2% on MPJPE and 10.3%
on P-MPJPE) while maintaining a small model size.

2. Related Work

2.1. 3D Human Pose Estimation

Lee and Chen [22] first investigate the problem of infer-
ring the 3D body configuration from a single image. Later
approaches [16, 13] use the estimated 2D pose as a query
to retrieve the nearest 3D pose from a large pose library.
Recent state-of-the-art approaches are based on deep neural
networks. They can be broadly divided into two categories.

The first category is to train deep convolutional neural
networks (CNNs) to directly regress 3D human poses from
input images in an end-to-end fashion [44, 4, 37, 33, 61, 35,
23, 45, 60]. Some of them strive to learn a more power-
ful representation. For example, Park et al. [35] concate-
nate 2D pose estimation as well as information on relative
positions with respect to multiple joints to obtain a more
accurate 3D pose. Pavlakos et al. [37] introduce a fine dis-
cretization of the 3D space around the subject and train a
CNN to predict per voxel likelihoods for each joint. Chen
et al. [4] build a part-aware 3D pose estimator by searching
a set of network architectures to learn heterogeneity among
human body parts. Some other works attempt to integrate
3D geometry modeling into deep learning. Zhou et al. [62]
leverage a sparsity-driven 3D geometric prior and temporal
smoothness to infer 3D poses from uncertain 2D keypoint
maps via the EM algorithm. Zhou et al. [61] directly em-
bed a kinematic object model into the deep neutral network
learning for general articulated object pose estimation. The
approaches in the first category benefit from the rich infor-
mation contained in images. However, it cannot be gener-
alized well to different environments, e.g., from indoor to
outdoor environment.

The second category of approaches [31, 3, 6, 57, 50, 52,
28, 30, 5, 55] decouple 3D HPE into well-studied 2D pose
regression and 2D-to-3D pose lifting from the detected 2D
keypoints. Some approaches [28, 57, 3, 6] exploit GCN for
3D HPE, which are most related to our work. Cai et al.
[3] construct a local-to-global network which enables GCN
to learn multi-scale feature representations corresponding
to different semantic meanings. Ci et al. [6] enhance the
representation capability of GCN by introducing a locally
connected network.

Zhao et al. [57] propose a semantic GCN by multiplying
a learnable mask to the skeleton-based affinity matrix and
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then extending it to channel-specific affinity masks. Our
Modulated GCN differs from theirs in two aspects. First, a
shared feature transformation is employed by all nodes in
the semantic GCN while we explicitly disentangle the fea-
ture transformations for different body joints by learning
node-specific modulation vectors. Second, we find multi-
plying a learnable mask to the skeleton-based affinity ma-
trix is suboptimal because it cannot learn relations beyond
the natural connections of body joints. We have an in-
depth investigation of different affinity modulation methods
to resolve this issue. In addition, we have a comprehensive
study of the impact of different regularizations on the affin-
ity modulation.

Liu et al. [28] investigate different weight unsharing
methods in a GCN. Our work is different from theirs in two
aspects. First, weight unsharing uses different transforma-
tion matrices for different nodes and thus significantly in-
creases the model size. By contrast, our weight modulation
solves this problem by introducing a modulation vector for
each node. Second, we have an in-depth investigation of
affinity modulation, but they ignore.

2.2. Graph Convolutional Networks (GCNs)

GCNs [18, 7, 11, 2] generalize the capability of CNNs
by performing convolution operations on graph-structured
data. Existing GCNs can be divided into two main
streams, the spectral-based approaches [7, 24, 42] and the
spatial-based approaches [18, 11, 2, 46]. The first stream
are defined in the Fourier domain by computing eigen-
decomposition of the graph Laplacian [1, 8]. Our work falls
into the second stream which define the convolutional filters
in the vertex domain and directly apply convolution opera-
tions on the graph nodes and their neighbors [56].

GCNs have been applied in other computer vision tasks
besides 3D HPE, such as action recognition [58, 41], ob-
ject detection [51], visual question answering [26], and ob-
ject tracking [10]. Shi et al. [41] add a learnable matrix to
the affinity matrix in a GCN for action recognition. Our
approach differs with theirs in several aspects. First, we
have an in-depth investigation of different affinity modula-
tion methods and draw new conclusions they do not have.
Second, we study the impact of several regularizations of
the modulation matrix on the generalization ability, but they
ignore. Third, we also introduce the new weight modu-
lation. Fourth, we focus on 3D HPE while they focus on
action recognition.

3. Our Approach
Our Modulated GCN contains two major components:

weight modulation and affinity modulation. We first review
the vanilla GCN and its weight unsharing variant [28] in
Sec. 3.1. Then, weight modulation and affinity modula-
tion are introduced in Sec. 3.2 and Sec. 3.3, respectively.

Finally, we present the network architecture in Sec. 3.4.

3.1. Vanilla GCN

We briefly review the vanilla GCN introduced by [18]. A
graph is defined as G = {V, E}, where V is a set of N nodes
and E is a collection of edges. The edges can be represented
by an affinity matrix A ∈ {0, 1}N×N . Each node i is asso-
ciated with a D-dimensional feature vector hi ∈ RD. The
collection of features of all nodes can be written as a ma-
trix H ∈ RD×N , where the ith column of H is hi. A graph
convolutional layer transforms and aggregates the input fea-
tures following the equation below:

H′ = σ(WHÃ) (1)

where H′ ∈ RD′×N is the updated feature matrix, σ(·) is
the activation function, i.e., ReLU [34], and W ∈ RD′×D

is the learnable weight matrix which changes the feature di-
mension from D to D′. Ã is the symmetrically normalized
affinity matrix [18]. A GCN obtains enhanced feature repre-
sentations by stacking multiple graph convolutional layers
and repeatedly transforming and aggregating the features of
nodes and their neighbors. The enhanced feature represen-
tations are used for prediction via the last layer in the net-
work.

Let ãij be the (i, j)th entry of Ã, Ni and Ñi ≡ Ni ∪{i}
represent the set of neighboring nodes of node i excluding
and including itself respectively. Note that j ∈ Ñi if and
only if ãij is non-zero. Eq. (1) can be equivalently written
as:

h′
i = σ(

∑
j∈Ñi

Whj ãij) (2)

where h′
i is the ith column of the updated feature matrix

H′, i ∈ {1, ..., N}. One limitation of this vanilla graph
convolution is that it shares a feature transformation W for
each node and thus prevents the GCN from learning diverse
relational patterns between different body joints. Liu et al.
[28] solve this problem by using a different weight matrix
Wj ∈ RD′×D to transform each node j before aggregating
them:

h′
i = σ(

∑
j∈Ñ

Wjhj ãij) (3)

They also found decoupling the transformations of self-
connections and other edges can significantly improve the
3D HPE performance, which has also been observed in
other works [28, 57, 53]. While weight unsharing using Eq.
(3) improves the performance, it significantly increases the
model size, i.e., by a factor of N (typically 16 or 17).

3.2. Weight Modulation

Weight modulation means to solve the aforementioned
problem caused by a shared feature transformation for dif-
ferent nodes while retaining a small model size. Unlike
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Figure 2. Illustration of (a) the vanilla graph convolution, (b)
weight unsharing, and (c) weight modulation.

⊗
and

⊙
de-

note matrix multiplication and element-wise multiplication, re-
spectively. (a) The vanilla graph convolution uses a shared weight
matrix for all nodes. (b) Weight unsharing [28] assigns different
weight matrices to different nodes. (c) The proposed weight mod-
ulation uses a shared weight matrix but learns different modulation
vectors for each node.

weight unsharing in Eq. (3), weight modulation uses a
shared weight matrix W as in the vanilla GCN but learns
a different modulation vector mi for each node i and uses it
to modulate the shared weight matrix:

h′
i = σ(

∑
j∈Ñi

(mj ⊙W)hj ãij) (4)

where mj ∈ RD′
is a learnable modulation vector for node

j (j = 1, . . . , N ), ⊙ denotes element-wise multiplication
but should broadcast properly. Specifically, mj⊙W means
the dth row of W is scaled by the dth element of mj , and
the result is of the same dimension as W, i.e., D′ ×D.

If we treat weight sharing in Eq. (1) and weight unshar-
ing in Eq. (3) as two extremes, weight modulation lies be-
tween them. On the one hand, the feature transformations
applied to different nodes are different as their modulation
vectors are different. On the other hand, these different
transformations lie in a common subspace. We will show
that weight modulation can solve the problem caused by
weight sharing as effectively as weight unsharing. Unlike
weight unsharing which significantly increases the model
size, the number of additional parameters brought by weight
modulation is ignorable. This further makes weight modu-
lation generalize better. Specifically, the numbers of param-
eters of the vanilla graph convolution, weight unsharing and
weight modulation are respectively D′ ×D, D′ ×D ×N
and D′ × (D +N). For 3D HPE, N is significantly smaller
than D and D′.

Putting together updated features of all nodes, Eq. (4)
can be equivalently written as a compact form:

H′ = σ((M⊙ (WH))Ã) (5)

where M ∈ RD′×N is the collection of all modulation vec-
tors, and its ith column is mi. From Eq. (5), we can also un-
derstand weight modulation as multiplying different modu-
lation vectors to updated feature vectors of different nodes
before they are aggregated.

3.3. Affinity Modulation

The vanilla GCN [18] exploits a predefined affinity ma-
trix to capture the correlations between nodes. For 3D HPE,
the graph is usually defined based on the human skeleton.
We call it a skeleton graph and denotes it as Askeleton ∈
RN×N . An element in Askeleton is 1 if the corresponding
pair of body joints are naturally connected and 0 otherwise.
Recently, Zhao et al. [57] find it beneficial to multiply a
learnable mask P ∈ RN×N to Askeleton so that the nonzero
values in it can be adjusted:

Amul = Askeleton ⊙P (6)

where Amul ∈ RN×N is a new affinity matrix.
One limitation of this method is that only the affinity

values corresponding to the edges in the skeleton graph
are learnable. Human activities often exhibit motion pat-
terns beyond the natural connections of body joints, e.g.,
the strong correlation between arms and legs for a walking
or running person. A simple solution is to replace the mul-
tiplication in Eq. (6) with addition or use their mixed form:

Aadd = Askeleton +Q (7)
Amix = Askeleton ⊙P+Q (8)

where Q ∈ RN×N is a learnable matrix. We also consider
a learnable affinity matrix without imposing any skeleton
prior:

Ano−skeleton = Q (9)

Note in Eqs. (6)-(9), P and Q always represent learnable
matrices and Askeleton is a constant affinity matrix.

Aadd, Amix and Ano−skeleton are more flexible than
Amul because they allow the graph to include extra edges
beyond the natural connections of body joints. However,
too much freedom can lead to overfitting and harm the gen-
eralization ability of a GCN. We have an in-depth investiga-
tion of this potential issue by exploring the impact of differ-
ent regularizations on affinity modulation. Specifically, we
consider three types of regularizations: symmetry, low rank
and sparsity.

Symmetry. A symmetric affinity matrix corresponds to
an undirected graph. It means the correlation between two
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Figure 3. The network architecture of the proposed Modulated GCN for 3D human pose estimation. (D,N) indicates the feature channels
and the number of body joints, respectively.

body joints does not depend on the direction of their con-
nection. Since the skeleton graph is symmetric, we only
need to make the modulation matrix symmetric to get a
symmetric affinity matrix. This can be easily achieved by
representing the modulation matrix as the average of a ma-
trix and its transpose: (Q+Q⊤)/2.

Low rank. An alternative way to enforce the affinity
matrix to be symmetric is to represent the modulation ma-
trix as the multiplication between a matrix L ∈ RN×C and
its transpose: LL⊤ ∈ RN×N . If C < N , this represen-
tation also constrains the modulation matrix to be within a
low-dimensional subspace.

Sparsity. As a common regularization technique in ma-
chine learning, sparsity promotes generalization [32] by re-
moving irrelevant or weakly relevant features. A sparse
affinity matrix has only a few nonzero elements, which
should correspond to the edges that are most relevant to
the task. We achieve this regularization by including an ℓ1-
norm of the affinity matrix in the loss function.

3.4. Network Architecture

As illustrated in Fig. 3, the input of our Modulated GCN
is 2D keypoints which can be obtained via an off-the-shelf
2D detector. Motivated by Martinez et al. [31], we use two
modulated graph convolutional layers as a building block
and the skip connection is applied. All the graph convolu-
tional layers are followed by batch normalization [14] and a
ReLU [34] activation function except for the last one. The
3D pose is generated by the last layer of the network. We
use the weighted summation of an ℓ2-norm loss and an ℓ1-
norm loss to compare the prediction and ground truth, i.e.,
both losses are imposed on the prediction error, and their
weights are respectively 0.9 and 0.1.

4. Experiments
We first introduce experimental settings, evaluation met-

rics and implementation details in Sec. 4.1. The results of
ablation study on each component of the proposed approach
are reported in Sec. 4.2. We compare our Modulated GCN
with state-of-the-art methods in Sec. 4.3. Finally, some
qualitative results are shown in Sec. 4.4.

4.1. Setting

Dataset. We evaluate our approach on two standard
benchmarks: Human3.6M [15] and MPI-INF-3DHP [33].
Human3.6M is the most widely used dataset in the 3D HPE
literature. It contains 3.6 million images which are filmed
by 4 synchronized cameras in different views. There are 15
daily activities such as walking, phoning, sitting and engag-
ing in a discussion, performed by 11 human subjects in an
indoor environment. The annotations of accurate 3D body
joint coordinates are captured by a motion capture system,
while the 2D poses are obtained by projection with known
intrinsic and extrinsic camera parameters. Following previ-
ous work [31], we use standard normalization to preprocess
the 2D and 3D poses before feeding them into our model.
The hip joint is adopted as the root joint of 3D pose for
zero-centering. MPI-INF-3DHP is a recent 3D human pose
dataset constructed by a motion capture system with both
indoor scenes and complex outdoor scenes. In contrast to
Human3.6M, it covers more action classes ranging from
walking and sitting to challenging exercise poses and dy-
namic actions. To demonstrate the generalization ability of
our model quantitatively, we evaluate our model trained on
Human3.6M on the testing set of MPI-INF-3DHP. The test
split is made up of approximately 3k images from six sub-
jects performing seven actions.

Evaluation protocols. Two standard protocols are ex-
ploited to evaluate our model on Human3.6M. We uses
five subjects (S1, S5, S6, S7 and S8) for training and two
subjects (S9 and S11) for testing under both Protocol #1
and Protocol #2. All the camera views are trained with
a single model for all actions. Following previous work
[31, 3, 6, 54, 9], two metrics are utilized to evaluate our
approach on Human3.6M. The metric used in Protocol #1
is the mean per-joint position error (MPJPE) which mea-
sures the average euclidean distance in millimeter between
the ground truth and the prediction after aligning the root
joint (the hip joint). Another metric is the mean per-joint
position error after Procrustes alignment (P-MPJPE), which
is used in Protocol #2. This metric is invariant to both rota-
tion and scaling. For MPI-INF-3DHP, a 3D extension of the
Percentage of Correct Keypoints (3DPCK) and Area Under
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Method Channels Params MPJPE P-MPJPE

Askeleton 128 0.27M 49.73 39.92
Amul 128 0.27M 43.05 33.43
Ano−skeleton 128 0.27M 42.21 33.71
Amix 128 0.27M 41.10 32.02
Aadd 128 0.27M 40.53 31.39

Table 1. Ablation study on variants of affinity modulation. The
units of MPJPE and P-MPJPE are millimeters (mm).

the Curve (AUC) are adopted as the evaluation metrics.
Implementation details. Following previous work [38],

we obtain 2D pose detections using the cascaded pyramid
network (CPN) [27]. Our model is implemented in Pytorch
and optimized via Adam [17]. All experiments are con-
ducted on a single NVIDIA RTX 2080 Ti GPU. We ini-
tialize the weights in Modulated GCN using the technique
described in [12]. 3D pose regression from 2D detections
is more challenging than that from 2D ground truth as the
former needs to deal with some extra uncertainty in the 2D
space. Therefore, it is favorable to set different configura-
tions for them to avoid overfitting and achieve better con-
vergence. For 2D ground truth, we set the initial learning
rate 0.001, the decay factor 0.96 per 4 epoch, the batch size
64. For 2D pose detections, we set the initial learning rate
0.005, the decay factor 0.65 per 4 epoch, the batch size 256.
We also set the channels to 384 to handle the detection er-
rors. Following [3], we incorporate a non-local layer [49]
and a pose refinement module to improve the performance.
In the ablation study, the pose refinement module and the
non-local layer are excluded. Also, we use the 2D ground
truth as input to bypass the influence from 2D pose detec-
tors. When comparing with the states of the art, we use the
Modulated GCN which combines weight modulation in Eq.
(5) and the affinity modulation Aadd in Eq. (7) respectively,
and the symmetry regularization is applied to the affinity
matrix. Previous works [28, 57, 53] find that decoupling
the transformations of self-connections and other edges can
significantly improve the 3D HPE performance, which we
also observe. Therefore, we report results obtained by the
decoupling versions of all GCN variants (detailed formula-
tions are included in the supplementary material).

4.2. Ablation Study

We conduct comprehensive ablation study on Hu-
man3.6M. The proposed Modulated GCN contains two
main components: weight modulation and affinity mod-
ulation. The objective is to validate the effectiveness of
each component under controlled settings. Note that the 2D
ground truth is taken as input to eliminate the extra uncer-
tainty from the 2D pose detector.

Method Channels Params MPJPE P-MPJPE

Aadd 128 0.27M 40.53 31.39
Aadd + symmetry 128 0.27M 39.42 31.08
Aadd + sparsity 128 0.27M 40.23 32.06
Aadd + low-rank 128 0.27M 39.43 31.46

Aadd + symmetry + ℓ1-loss 128 0.27M 38.52 31.06

Table 2. Ablation study on imposing different regularizations on
affinity modulation. The units of MPJPE and P-MPJPE are mil-
limeters (mm). The ℓ1-loss in the last row means to include an
ℓ1-norm loss of the prediction error as discussed in Sec. 3.4.

Method Channels Params MPJPE P-MPJPE Infer. Time

Weight sharing 128 0.27M 40.53 31.39 0.008s
Weight modulation 124 0.27M 38.83 30.35 0.008s
Weight unsharing 128 4.22M 38.08 29.96 0.032s

Weight sharing 256 1.06M 39.39 31.24 0.008s
Weight modulation 256 1.10M 37.43 29.73 0.008s
Weight unsharing 256 16.83M 39.09 30.32 0.035s

Table 3. Ablation study on the proposed weight modulation. The
units of MPJPE and P-MPJPE are millimeters (mm). All the three
variants use the affinity modulation Aadd defined in Eq.(7) with-
out imposing regularizations. Infer. Time indicates (per-batch)
inference time.

Method Channels Params MPJPE P-MPJPE

SemGCN 128 0.27M 42.14 33.53

SemGCN w/ Non-local [49] 128 0.43M 40.78 31.46

Modulated GCN 128 0.29M 38.25 30.06

Table 4. Comparison between the SemGCN [57] and the proposed
Modulated GCN. The units of MPJPE and P-MPJPE are millime-
ters (mm).

Variants of Affinity Modulation. We investigate four
different affinity modulation methods described in Sec. 3.3.
We use the vanilla GCN supervised by an ℓ2-norm loss of
the prediction error as a base network and compare the per-
formance obtained by different variants of affinity modula-
tion. Note weight modulation is not included in this ablation
study. The results are reported in Tab. 1. The observation
that Aadd and Amix outperform Amul indicates that learn-
ing edges beyond the skeleton graph is helpful. In addition,
Aadd outperforms Ano−skeleton. This indicates it is impor-
tant to enforce the skeleton prior in affinity modulation. Fi-
nally, mixing Amul and Aadd, i.e., Amix, performs worse
than Aadd. The predefined graph Askeleton performs much
worse than learnable graphs due to its inflexibility.

Regularizations of Affinity Modulation. We evaluate
the variants of regularizations discussed in Sec. 3.3. The
vanilla GCN with affinity modulation Aadd is taken as a
baseline. The results are shown in Tab. 2. For the spar-
sity regularization, we have tried different regularization
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Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Hossain & Little [39] (†) 44.2 46.7 52.3 49.3 59.9 59.4 47.5 46.2 59.9 65.6 55.8 50.4 52.3 43.5 45.1 51.9

Lee et al. [23] (†) 40.2 49.2 47.8 52.6 50.1 75.0 50.2 43.0 55.8 73.9 54.1 55.6 58.2 43.3 43.3 52.8

Cai et al. [3] (†) 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8

Pavllo et al. [38] (†) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8

Xu et al. [52] (†) 37.4 43.5 42.7 42.7 46.6 59.7 41.3 45.1 52.7 60.2 45.8 43.1 47.7 33.7 37.1 45.6

Liu et al. [30] (†) 41.8 44.8 41.1 44.9 47.4 54.1 43.4 42.2 56.2 63.6 45.3 43.5 45.3 31.3 32.3 45.1

Wang et al. [48] (†) 40.2 42.5 42.6 41.1 46.7 56.7 41.4 42.3 56.2 60.4 46.3 42.2 46.2 31.7 31.0 44.5

Martinez et al. [31] 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Sun et al. [43] 52.8 54.8 54.2 54.3 61.8 67.2 53.1 53.6 71.7 86.7 61.5 53.4 61.6 47.1 53.4 59.1

Yang et al. [54] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6

Fang et al. [9] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4

Pavlakos et al. [36] 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2

Zhao et al. [57] 47.3 60.7 51.4 60.5 61.1 49.9 47.3 68.1 86.2 55.0 67.8 61.0 42.1 60.6 45.3 57.6

Sharma et al. [40] 48.6 54.5 54.2 55.7 62.2 72.0 50.5 54.3 70.0 78.3 58.1 55.4 61.4 45.2 49.7 58.0

Ci et al. [6] 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7

Cai et al. [3] (single-frame) 46.5 48.8 47.6 50.9 52.9 61.3 48.3 45.8 59.2 64.4 51.2 48.4 53.5 39.2 41.2 50.6

Pavllo et al. [38] (single-frame) 47.1 50.6 49.0 51.8 53.6 61.4 49.4 47.4 59.3 67.4 52.4 49.5 55.3 39.5 42.7 51.8

Liu et al. [28] (weight unsharing) 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4

Ours 45.4 49.2 45.7 49.4 50.4 58.2 47.9 46.0 57.5 63.0 49.7 46.6 52.2 38.9 40.8 49.4

Table 5. Quantitative comparisons on Human3.6M under Protocol #1. Errors are in millimeters. (†): uses temporal information.

Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Hossain & Little [39] (†) 36.9 37.9 42.8 40.3 46.8 46.7 37.7 36.5 48.9 52.6 45.6 39.6 43.5 35.2 38.5 42.0

Lee et al. [23] (†) 34.9 35.2 43.2 42.6 46.2 55.0 37.6 38.8 50.9 67.3 48.9 35.2 50.7 31.0 34.6 43.4

Cai et al. [3] (†) 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0

Pavllo et al. [38] (†) 34.1 36.1 34.4 37.2 36.4 42.2 34.4 33.6 45.0 52.5 37.4 33.8 37.8 25.6 27.3 36.5

Xu et al. [52] (†) 31.0 34.8 34.7 34.4 36.2 43.9 31.6 33.5 42.3 49.0 37.1 33.0 39.1 26.9 31.9 36.2

Wang et al. [48] (†) 31.8 34.3 35.4 33.5 35.4 41.7 31.1 31.6 44.4 49.0 36.4 32.2 35.0 24.9 23.0 34.5

Martinez et al. [31] 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Sun et al. [43] 42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 48.3

Fang et al. [9] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7

Pavlakos et al. [36] 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8

Li et al. [25] 35.5 39.8 41.3 42.3 46.0 48.9 36.9 37.3 51.0 60.6 44.9 40.2 44.1 33.1 36.9 42.6

Ci et al. [6] 36.9 41.6 38.0 41.0 41.9 51.1 38.2 37.6 49.1 62.1 43.1 39.9 43.5 32.2 37.0 42.2

Cai et al. [3] (single-frame) 36.8 38.7 38.2 41.7 40.7 46.8 37.9 35.6 47.6 51.7 41.3 36.8 42.7 31.0 34.7 40.2

Pavllo et al. [38] (single-frame) 36.0 38.7 38.0 41.7 40.1 45.9 37.1 35.4 46.8 53.4 41.4 36.9 43.1 30.3 34.8 40.0

Liu et al. [28] (weight unsharing) 35.9 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2

Ours 35.7 38.6 36.3 40.5 39.2 44.5 37.0 35.4 46.4 51.2 40.5 35.6 41.7 30.7 33.9 39.1

Table 6. Quantitative comparisons on Human3.6M under Protocol #2. Errors are in millimeters. (†): uses temporal information.

weights, i.e., 10−2, 10−3, 10−4, 10−5, 10−6, and reported
the best result (achieved at 10−6). For the low-rank regular-
ization, we have tried different subspace dimensions, i.e., 7,
9, 11, and reported the best result (achieved at 9). We can
see that the baseline is enhanced by imposing the symmetry
regularization on the affinity matrix. Specifically, it reduces
MPJPE by 1.11mm. However, the sparsity and low-rank
regularizations are not as effective as the symmetry regu-
larization. We have also tried the combination of sparsity
and symmetry regularizations and observed degraded per-
formance. Note the low-rank regularization automatically

imposes symmetry. Finally, we replace the widely-used
ℓ2-norm loss with a combination of ℓ2-norm and ℓ1-norm
losses imposed on the prediction error (as discussed in Sec.
3.4) and see that this can further improve the performance.

Weight Modulation. The proposed weight modulation
module aims to address the limitation of the vanilla GCN
which assigns a shared feature transformation for all nodes
and the inefficiency of weight unsharing GCNs in Eq. (3)
caused by completely unsharing feature transformations for
different nodes. We use the vanilla GCN with affinity mod-
ulation Aadd as a baseline, and replace weight sharing with
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Figure 4. Qualitative results obtained by our Modulated GCN on
the Human3.6M dataset.

weight modulation and weight unsharing. The results are
shown in Tab. 3. We can see that weight modulation has
comparable performance with [28] by using only 0.27M
parameters, a 93.6% reduction of model size. Doubling
channels, it outperforms [28] by using 1.10M parameters,
a 73.9% reduction of model size.

Tab. 4 further compares our Modulated GCN with the
Semantic GCN (SemGCN) [57], a state-of-the-art variant
of GCN designed for 2D-to-3D pose lifting. To eliminate
the influence from the 2D pose detector, we report results
on 2D ground truth. We can see that our Modulated GCN
can outperform the SemGCNs with and without non-local
modules. Note our Modulated GCN does not use non-local
modules. This demonstrates the great advantage of our
Modulated GCN. More comparison between the proposed
approach and state-of-the-art GCNs can be found in Fig. 1.
We can see the Modulated GCN achieves the best trade-off
between performance and the model size.

4.3. Comparison with State of the Art

Human3.6M. We compare the Modulated GCN with
some state-of-the-art methods on Human3.6M under both
Protocol #1 and Protocol #2. Following previous works
[38, 3, 28], we use 2D poses detected by a pre-trained cas-
caded pyramid network (CPN) [27] as input. The results are
reported in Tab. 5 and Tab. 6. Note that some approaches
[38, 3, 52, 30, 23] exploit temporal smoothness by taking
monocular video clips as input. However, our Modulated
GCN is still very competitive and outperforms all the other
methods except for those using temporal information.

MPI-INF-3DHP. We evaluate our Modulated GCN on
the testing set of MPI-INF-3DHP to test its generalization
ability across different datasets. Following [25], we use the
2D joints provided by the dataset as input. The results are
shown in Tab. 7. Our approach shows superior performance
over all the other methods under both the indoor and out-
door scenes. Note that our model is only trained with indoor

Methods GS no GS Outdoor 3DPCK AUC
Mehta et al. [33] 70.8 62.3 58.5 64.7 31.7
Zhou et al. [59] 75.6 71.3 80.3 75.3 38.0
Zhou et al. [60] 71.1 64.7 72.7 69.2 32.5
Yang et al. [54] - - - 69.0 32.0
Pavlakos et al. [36] 76.5 63.1 77.5 71.9 35.3
Wang et al. [47] - - - 71.9 35.8
Martinez et al. [31] 49.8 42.5 31.2 42.5 17.0
Li et al. [25] 70.1 68.2 66.6 67.9 -
Liu et al. [28] (weight unsharing) 77.6 80.5 80.1 79.3 47.6
Ours 86.4 86.0 85.7 86.1 53.7

Table 7. Quantitative comparisons on MPI-INF-3DHP. GS denotes
green screen. A higher value of 3DPCK or AUC indicates better
performance.

scenes on Human3.6M, but it achieves satisfactory results
on outdoor scenes. This indicates that our model general-
izes well to unseen actions and datasets.

4.4. Qualitative Results

Fig. 4 shows some visualization results obtained by our
Modulated GCN on Human3.6M. It can accurately predict
3D poses of different persons who are performing various
actions. The difference between our prediction and the
ground truth is usually negligible. Some 2D pose estima-
tions are not perfect especially when occlusion happens.
But reasonable predictions can still be generated by our ap-
proach.

5. Conclusions
From extensive ablation study and benchmark exper-

iments, we draw the following conclusions. (1) Weight
modulation can resolve the limitation caused by a shared
feature transformation for different nodes while retaining a
small size. (2) Affinity modulation is necessary for good
performance. Both the skeleton prior and the ability to
learn edges beyond the skeleton are important for affinity
modulation. (3) Affinity modulation with an unconstrained
modulation matrix does not cause severe generalization
problems. Only the symmetry regularization can improve
its performance. (4) The Modulated GCN, integrating
weight modulation and affinity modulation, achieves the
best trade-off between performance and the model size
among all GCN approaches. (5) The Modulated GCN
outperforms some recent states of the art on two benchmark
datasets.
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