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Abstract—In this paper, we propose an approach to improving
the I/O performance of an IBM Blue Gene/Q supercomputing
system using a novel framework that can be integrated into
high performance applications. We take advantage of the systems
tremendous computing resources and high interconnection band-
width among compute nodes to efficiently exploit I/O bandwidth.
This approach focuses on lossless data compression, topology-
aware data movement, and subfiling. The efficacy of this solution
is demonstrated using microbenchmarks and an application-level
benchmark.

I. INTRODUCTION

I/O remains a major problem in high performance com-
puting systems. Much of the research to date has focused
on finding ways to improve I/O performance on a particular
system; however, if the problem is examined holistically from
the time the data is created at the compute nodes, to when it
is written to disk there is a strong argument for combining
several approaches to achieving multi-fold performance gains.

In our previous work [1] on the Blue Gene/P system, we
leveraged a topology-aware data movement and data staging
mechanism to improve I/O by several orders of magnitude.
System interconnects have continued to increase in complexity:
Blue Gene/P and Cray XK7 have a 3D torus; Blue Gene/Q
has a 5D torus; and the K-machine has a 6D torus. Effectively
exploiting each topology is critical to I/O data movement.

File system locking is another aspect that degrades I/O per-
formance. Applications typically write data to a single shared
file or to a file for each process. As we move towards future
systems, this mechanism could lead to significant locking
overheads associated with parallel filesystems. We investigate
the use of subfiling [2], wherein a few large files are written
out instead for I/O.

Finally, we observe that for many scientific simulations,
the numerical datasets that are generated have high entropy –
which suggests the possibility of using compression to reduce
the file size prior to its transfer. These large datasets also take
considerable time to transfer to data storage, which increases
overall application execution time. Therefore, reducing both
the file size and the transfer time to storage are essential to
our approach. The use of compression is further leveraged by
the abundant computing power available in current systems.

In this paper we present an I/O framework that incorporates
compression, topology-aware data movement and aggrega-

tion, and subfiling. In the next section, we briefly present
an overview of Mira, Argonne National Laboratory’s Blue
Gene/Q supercomputer, and background of our research. Sec-
tion III describes our compression-based, topology-aware, and
subfiling-based I/O framework. In section IV, we show mi-
crobenchmarks for the framework and describe an evaluation
of I/O performance improvement using an application at scale.
We then discuss related work in section V. Finally we present
our conclusions in section VI.

II. BACKGROUND

In this section, we begin by describing the high perfor-
mance system used to conduct this research. We then present
our related work conducted on the previous generation IBM
Blue Gene/P. Next we introduce two compression libraries:
Blosc and zlib. While we use Blosc in our ongoing research
efforts to improve I/O performance, we use zlib here to
illustrate Bloscs distinguishing features.

A. Mira – a Blue Gene/Q Supercomputer

The IBM Blue Gene/Q system [3] is designed to provide
high-performance, low power consumption supercomputing.
Argonnes Mira system contains 48 racks, 768K cores, and
has a theoretical peak performance of 10 petaflops. Each node
has 16 cores in use, with 16 GB of RAM per node. I/O and
interprocessor communication travels on a 5D torus network
both for point-to-point and collective communications. This 5D
torus interconnects each compute node with its 10 neighbors
at 2 GB/s theoretical peak over each link in each direction,
making a total of 40 GB/s bandwidth in both directions for
one single compute node. Every 128 compute nodes has two
2 GB/s bandwidth links to two different I/O nodes, making 4
GB/s bandwidth for I/O at most. I/O nodes are connected to
file servers through QDR IB. Mira uses a GPFS file system
with 24 PB of capacity and 240 GB/s bandwidth.

B. GLEAN

In our effort to improve I/O performance on Blue Gene/P
and Q systems, we developed GLEAN, a topology-aware
data movement and staging framework for I/O acceleration.
Instead of allowing every process to transfer its data to storage
or external analysis clusters, GLEAN chooses a subset of



processes, namely aggregators, based on network topology
to do it. This approach reduces congestion due to the high
number of data movements and number of write requests seen
by the file system. It also increases the size of the write buffer,
hence increasing write performance. GLEAN has been proven
to increase the I/O performance of a Blue Gene/P system to
close to the peak of the I/O system.

C. Data compression

Data compression is gaining importance for improving I/O
performance. Compression reduces the size of the data, thereby
decreasing the transfer time. It plays a key role in reducing
the overall storage bandwidth and space requirements of the
parallel storage design. There exist several general and specific
purpose data compression libraries. We give an overview of the
zlib [4] and Blosc [5] used in this work.

1) zlib: zlib is a general purpose lossless data compression
library [4]. It uses a combination of the LZ77 algorithm and
Huffman coding. Though widely used, it is not optimal for any
specific data types. There are variations of zlib with trade-offs
between speed and compression ratio.

2) Blosc: Blosc is a blocking, shuffling, and lossless com-
pression library [5]. It reduces the size of data by assuming
that the data within a certain space/volume does not change
much, i.e., that the most significant bits do not change as much
as the less significant bits. It shuffles the data to put the most
significant bits together then uses BloscLZ, which is heavily
based on FastLZ, to compress the data.

III. I/O FRAMEWORK

Numerous challenges are encountered when designing an
I/O framework for high performance computing systems.
These include: the interconnect networks to transfer data
are complex, heterogeneous, and rapidly change over time;
and existing filesystems may have different configurations to
handle files differently depending on whether they are shared
or are exclusive to a process. Our framework is divided into
three components to handle these challenges. It is implemented
in C/C++, uses MPI, and provides interfaces for both Fortran
and C-based parallel applications.

Application

Data compression

Topology-aware data movement

Subfiling and parallel I/O

Fig. 1: Compression-based, topology-aware, subfiling-based
I/O Framework

A. Framework components

1) Parallel data compression: As the application calls
our framework to handle the write requests. It applies user-
specified preconditioners and appropriate compression libraries

on data. In our current implementation, we use only Blosc for
data compression and decompression; however, programmers
can use their own compression libraries with minimum modifi-
cation to achieve the best speed/compression ratio. Numerous
compression libraries provide the capability of parallel com-
pression, allowing systems to take advantage of all available
computing resources.

2) Topology-aware data movement: After compression, the
data is transferred out of the compute nodes to I/O nodes and
eventually is written to storage. The parallel data movement
used by MPI-IO for writing data out uses an algorithm that is
agnostic of the underlying network topology [1]. We present
an explicit data movement mechanism that takes underlying
network topology into consideration.

Our goal is to leverage the interconnection network topol-
ogy to move data out of the compute nodes as soon as possible.
We do this by developing a custom two-phase “collective I/O.”
In the first phase, data is aggregated to a subset of processes
called aggregators. These aggregators then write the aggregated
data out in the second phase. This technique reduces network
contention and reduces the number of writing requests to
the file servers. The underlying network and amount of data
determines the appropriate number and location of aggregators
as well as the data movement strategy. The detail of this work
is presented in a simple two-part algorithm, called 1.

In the first part we determine the number of aggregators

Algorithm 1 Determine number and location of aggregators
1. Calculate number of aggregators.
Total amount of data of processes sharing one file: D.
Calculate number of aggregators (N) based on stripe size on
filesystem(S): N = D/S.
2. Calculate location of aggregators.
Choose the split factors along dimensions sA, sB, sC, sD,
sE that N = sA*sB*sC*sD*sE.
Partition the cluster along each dimension by split factors
to have N blocks.
Color all processes in the same block with an unique color.
Create subcomms and select aggregators by using
MPI Comm split.

based on two factors: the stripe size of the filesystem and the
total amount of data needed to write. We calculate the total data
size by gathering the data from all processes sharing a file to a
preselected process. We then divide the total size by the stripe
size of the filesystem to get the number of aggregators. The
more data we have, the more aggregators we need. However, as
we show later in microbenchmarks IV-B, that for a certain size
of data, increasing the number of aggregators does not further
improve overall performance. This calculation assures that the
amount of data aggregated at each aggregator is more than
the stripe size of the filesystem and hence mitigates expenses
file locking in the underlying filesystem. In the second part
of the algorithm, we determine the location of aggregators.
This location is calculated based on an assumption that the
data is distributed approximately equally among all processes.
Under that assumption, aggregators are uniformly distributed
among all processes. On the Blue Gene/Q, compute nodes
are allocated for applications as a 5D hyper-cube cluster. To
designate aggregators, the I/O framework partitions the cluster
along each dimension into blocks. The I/O framework then



selects a single aggregator to each block. The algorithm does
so by assigning a unique color to processes in a block and
using MPI Comm split to set up communications within the
block (or subcomm) and to assign numbers to the processes;
the algorithm assigns processes #0 as the aggregators. The
subcomm is used to aggregate data. If aggregated data size is
larger than available buffer, multiple rounds of compression
and aggregation are needed.

3) Subfiling and parallel I/O: We observe that the number
of output files for an application indeed affects I/O perfor-
mance. This number can vary from a shared file to a few files
to a file per process. As we experimented on our system, too
few files (such as shared file/application) or too many files (file
per process) both resulted in the I/O bottleneck of the system.
In our system, I/O nodes manage the file metadata. Too many
files per I/O node or too many I/O nodes sharing a file both
lead to bottleneck in metadata management. Therefore, in this
design, we choose to write one output file per I/O node to avoid
inter-I/O node communication or file metadata management
overhead. We saw better performance than shared file and file
per process options. Aggregators belonging to the same I/O
node first gather data from processes sharing that I/O node
and then communicate to find out its file offset and write data
in parallel to a shared file. The metadata of compressed data
is gathered by a predefined process per file and written to the
beginning of every file.

B. Physical data layout

Our framework also provides a file format for writing
data to the storage system and for reading data back in a
parallel fashion for restarts and simulation post-processing and
analysis. Our file format includes four primary sections:

• Application metadata: the specific metadata for ap-
plications. Information such as number of variables,
names, data types of variables, and length of data.

• Compression metadata: the metadata about com-
pressed data helps to read data back from storage,
decompress it, and reconstruct it to its original form.
We need file offsets and lengths of compressed data to
read it from storage. After decompressing it, we then
need the application-specific metadata to reconstruct
the original data.

• Compressed data: contains actual compressed data.
• Checksum: contains the checksum of the file to make

sure that the data reading back is the data written
before.

IV. BENCHMARKS

We chose a physics application called HACC (Hard-
ware/Hybrid Accelerated Cosmology Code) to evaluate the
efficacy of our I/O framework. HACC [6] is a large-scale
cosmology code suite that simulates the evolution of the
Universe through the first 13 billion years after the Big Bang.
The simulation tracks the movement of trillions of particles as
they collide and interact. Data for each particle includes nine
variables (x, y, z, vx, vy, vz, phi, id, mask).

We evaluated our framework with microbenchmarks on two
compression techniques, zlib and Blosc, and the performance
of topology-aware aggregators on the achievable I/O through-
put. We compared this with IOR [7] to understand the tradeoffs

of performing I/O using a single shared file, a file per process,
and subfiling, wherein we create a few large files. Finally, we
show the efficacy of our framework in the HACC simulation.

A. Efficacy of Compression

In the following benchmarks, we define the compression
ratio as follow: compression ratio = Size of data before compression

Size of data after compression

In HACC, the particles exhibit a Monte Carlo-like behavior,
therefore the variables have a very high dynamic range and
are difficult to compress. On both zlib and Blosc benchmarks,
we used a single thread on a single core of a BG/Q node.
Figure 2a compares the achievable compression ratios for the
HACC data. The trade-off between ratio and speed can be
determined either by the user or automatically by the system
using a pre-defined utility function. For this paper, we fixed the
compression level at level 9. Overall, Blosc achieved a better
compression ratio than zlib. Figure 2b compares the time taken
by zlib and Blosc for compression and decompression of the
HACC datasets. The chief advantage of using Blosc is that it
takes as input the data type size of the variable being com-
pressed so it knows the possible repeatable patterns and can
look for those patterns faster. Zlib scans for possible patterns
byte by byte. In addition, Blosc loads the data to be compressed
into cache L1 and confines it there while it performs its search
for repeatable sequences, which speeds up the compression
process. For both libraries, the decompression process took less
time and was more stable than the compression process. This
is because the compression process also involves the search
for repeated sequences.
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Fig. 2: Compression libs Blosc vs. zlib for HACC datasets

B. Efficacy of topology-aware aggregation

We evaluated the efficacy of our algorithm to select the
number of aggregators on one rack of Mira (1,024 nodes)
with 8 I/O nodes, executed with 8 MPI processes per node
and varying the data size from 1 KB up to 16 MB. We
varied the number of aggregators per I/O node from 2 to 128.
The number of aggregators eventually determines the location
of aggregators in the 5D torus, as well as the data size of
each write request, the number of processes directly working
with file servers, and the memory needed to temporarily store
aggregated data.

In Fig. 3, each line represents the bandwidth achieved using
a particular number of aggregators per I/O node. Depending on
data size, our framework chooses the number of aggregators
(in the range of 4 to 32) to achieve the best performance.

The data shown in Fig. 3 validates of our aggregator num-
ber calculations and therefore our algorithm. Take for example



a 32 KB data size point. According to our algorithm, with the
data size at each rank being 32 KB, for one I/O node (128x8
ranks) we need 32Kx128x8/8MB=4 aggregators. As the figure
shows, at data size 32KB the green line with num agg=4
achieves the highest performance, exactly the same as our
algorithm. We also compared this with the default aggregation
mechanism used by MPI-IO. The aggregation mechanism [1]
fails to account for the topology of the system interconnect
and also the number of aggregators involved. We achieved a
10X improvement at 4K bytes per rank, a 3X improvement at
2M bytes message, and a 2X improvement at 16M. Improved
performance for smaller messages is the primary role for MPI
Collective I/O and we observed a significant improvement
in this realm. Thus, our aggregation scheme is effective in
improving the parallel I/O performance. As the interconnect
network topology is getting more complex, it is important to
exploit the topology to improve I/O performance.

10

100

1000

5000
10000
20000

4K 8K 16K 32K 128K 512K 1M 2M 4M 8M 16M

Th
ro

ug
hp

ut
(M

B/
s)

Size of data (Bytes)

Number of aggregators with certain size of data

num_agg = 2
num_agg = 4
num_agg = 8

num_agg = 16
num_agg = 32
num_agg = 64

num_agg = 128
MPI Collective IO
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C. Efficacy of subfiling

We evaluated the subfiling mechanism of our I/O frame-
work by comparing it to IOR. IOR allows to write a file-per-
process and a single shared file in writing data size 8 MB
per rank. We scaled the I/O experiments from 2,048 cores to
256K cores. For the file-per-process case, we used POSIX I/O
for IOR, and in the single shared file case, we used MPI-
IO for IOR. As IOR does not support subfiling, we wrote a
benchmark using our I/O framework, CGIO, to mimic IOR
while incorporating subfiling. In the subfiling case, all the
ranks associated with an I/O node of BG/Q write to a file.
Thus, the total number of files written out is equal to the
number of I/O nodes associated with the job (On Mira, this is
8 files per rack, or 16K cores).

Figure 4 shows that as the number of cores increased
to 32,768, IOR performance for a single shared file also
increased. However, as we scaled beyond to 256K cores, the
performance failed to scale. This is primarily due to the poor
scaling performance associated with GPFS filesystems locking
performance for a single shared file. IOR with the file-per-
process option generally has better performance, however, after
16,384 cores, its performance degrades due to the large number
of files that the fileservers and file system have to handle, and
the associated control information at this scale. In contrast, we
see that with subfiling, our performance increases linearly as

we scale the number of cores. At 256K cores, we are able to
sustain 205GB/s – this is 85% of the peak I/O performance
on the Mira BG/Q supercomputer, and a 40X improvement
over a single shared file and a 10X improvement over the
file-per-process performance. Thus, for scalable parallel I/O
performance, subfiling is of paramount importance to mitigate
the locking overheads associated with the underlying file
system.
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D. Weak Scaling Performance for HACC cosmology

We integrated and evaluated the performance of our I/O
framework with the HACC code. We performed a weak scaling
study and scaled the number of cores from 16,384 to 262,144
with a total number of particles ranging from 2, 0483 to
5, 0123. The total data per rank varies between 38 MB and
57 MB i.e., 1-1.5 million particles per rank. Thus, we wrote
400 GB at 16K cores and 4.8 TB of data at 256K cores. We
compared the performance of performing I/O for HACC using
four configurations: (1) MPI collective I/O to a single shared
file; (2) subfiling wherein we have a file per ION; (3) using
both topology-aware aggregation and subfiling; and (4) using
all the three components of our framework i.e., compression,
aggregation, and subfiling. We performed the simulation for 10
steps with each I/O configuration and reported the maximum
performance achieved by each configuration.

Figure 5 depicts the performance of the various I/O con-
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figurations. Subfiling yielded a 5X improvement at 16K cores



and a10X improvement at 256K cores over a single shared
file. Thus, subfiling is of critical importance as it mitigates the
impact of the GPFS locking mechanism at scale. Topology-
aware aggregation yields a 20% improvement over subfiling
at 16K cores and up to an 80% improvement over subfiling at
256K cores. Thus, we observe that leveraging system topology
plays an increasingly important role as we scale to larger core
counts. Using compression, and thus using all three compo-
nents of our I/O framework, we saw an additional 40% increase
in performance over using aggregation. This is primarily due to
our ability to achieve 50% compression for the HACC datasets,
and thus writing less data to the storage system. Overall, by
using subfiling, aggregation, and compression, we observed
a 10X improvement over MPI collective I/O at 16K cores
and a 14X improvement at 256K cores, achieving 130 GB/s.
Thus, all three are critical to achieving scalable parallel I/O
performance.

With the subfiling option (one file per I/O node) applied,
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the write performance increased 5 to 10 times. The aggregation
adds up to 80% write performance and compression adds
around 50% performance on top of that. The latter makes the
write performance 10 to 20 times better. The time associated
with each configuration is shown in Fig. 6. The combination
of compression, topology-aware data aggregation, and the
subfiling mechanism improved I/O performance on HACC
application multifold. Thus, achieving optimal I/O system per-
formance required improvements to each of the components,
from compute nodes to storage disks.

V. RELATED WORK

I/O forwarding and I/O staging are common techniques
to improve I/O performance. These two techniques have been
studied previously; a scalable I/O forwarding framework for
high-performance computing systems is described in [8]–[10],
and an augmentation for I/O forwarding and asynchronous data
staging for Blue Gene/P systems is presented in [11], [1] and
[12], as well as for the Cray systems [13]

Data compression is employed to reduce storage space and
to improve the bandwidth of data transfers at various locations
in system. In [14], compression happens transparently at the
network level, in [15] transparent compression applies to data
stored on the SSD-based caches. In [16], the authors developed
their own compression library and provided a framework for
multi-threaded retrieval and multi-threaded compression when
prefetching and caching data. ISOBAR [17] is a hybrid lossless

compression algorithm for large-scale parallel I/O systems;
developers evaluated several interleaving strategies to achieve
high-speed I/O, including leveraging the overlap of I/O time
for easy-to-compress and hard-to-compress data.

Overall I/O performance can also be improved via work
in file systems. Bent et. al. proposed PLFS [18], a checkpoint
file system for parallel applications that utilizes multiple check-
point files, thereby avoiding the bottleneck caused by using a
single shared checkpoint file. Our work can be distinguished
from previous efforts as follows:

• We use compression and data aggregation together.
Data compression reduces the size of the data files to
write. However, write requests with sizes smaller than
the stripe size can degrade system performance due to
(1) requests share a stripe and wait for lock/unlock on
the stripe and/or (2) overwhelm the file system with
too many requests. Our I/O framework not only guar-
antees that the size of data at each process working
with the file system is at least the stripe size, but also
gathers a big bulk of data to write, thus improving I/O
performance.

• Our topology-aware aggregation mechanism dis-
tributes the aggregators uniformly among the pro-
cesses, therefore reducing network congestion and
improving I/O performance.

• We choose a suitable subfiling mechanism that
matches the number of processes to the capacity of the
file system. In Blue Gene/Q systems, we write one file
per I/O node, avoiding bottlenecks caused by either a
single shared file or by a file-per-process mechanism.

• We compress all data instead of selecting a subset of
the data to compress or to send out, based on our
observation that compression time is relatively small
compared to I/O time.

• We process data depending on its size and the amount
of memory available. If the data size is too large to
compress and aggregate, we cut the data into appro-
priately sized chunks and carry out multiple rounds of
compression and aggregation.

VI. CONCLUSIONS

I/O is one of the critical performance bottlenecks for scien-
tific applications on high-performance computing systems. The
existing MPI-IO solution for the Blue Gene/Q systems fails to
fully scale in terms of performance. The BG/Q system is a
precursor to technologies we will need to scale in order to de-
velop scalable solutions for future supercomputers. To mitigate
this I/O bottleneck, we developed a framework to improve the
I/O performance on BG/Q systems significantly by: utilizing
compute power and appropriate compression/decompression
libraries to reduce the size of data; using fast and dedicated
interconnections to aggregate the data before it writing out;
and, subfiling to mitigate the locking contention with parallel
filesystems. We demonstrated the efficacy of our work through
a set of microbenchmarks and application benchmarks with
I/O performance improved by orders of magnitude. We plan
to build analytical models to tune our I/O framework in order
to deploy it onto other supercomputing systems.
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