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ABSTRACT
This paper investigates the interactive projection of mul-
tivariate space-time data. Specifically, it investigates how
complex datasets containing elements situated in space and
time that include additional variables can be interactively
explored to support effective multivariate geotemporal anal-
yses. Given that substantive analyses of space-time tra-
jectory data will likely be concerned with additional vari-
ables beyond space and time, we propose a novel technique,
stretch projections, that allows trajectory positions to be
determined by an arbitrary number of variables in a mul-
tidimensional space-time dataset. We present StretchPlot,
an interactive prototype that allows multidimensional space-
time trajectory data to be projected into a two-dimensional
space according to multiple user-defined coordinate vectors.
The StretchPlot tool is demonstrated using a large multidi-
mensional space-time dataset that combines the trajectories
of touring musicians with demographic data related to the
locations of their performances. Examples are shown which
identify relationships between multiple dimensions of space,
time, and additional demographic variables, indicating that
the use of of stretch projections may be useful for the ex-
ploratory analysis of multidimensional geotemporal data.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS

Keywords
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1. INTRODUCTION
The visualization of space-time trajectory data is challeng-
ing due to the fact that, in most cases, the data inherently
exists in more than two dimensions. Including temporal data
on a traditional map can be misleading, as data will often
occlude itself (e.g., when many events occur in the same loca-

tion but at different times), and in many cases the sequence
of events will be difficult or impossible to discern. At the
same time, a typical analysis of space-time trajectory data
will likely contain variables beyond space and time. Here
we present a novel interaction technique, stretch projections,
that allows trajectory positions to be determined by an ar-
bitrary number of variables in a multidimensional dataset.
Trajectories are thus rendered as sequences of events that
exist within a multidimensional space. Our technique in-
cludes an important element of interaction, allowing an an-
alyst to observe relative differences between multiple dimen-
sions. With this technique, the three dimensions of latitude,
longitude, and time can be combined with any number of ad-
ditional dimensions in a shared space. Our technique frames
trajectories as the paths of entities that move through some
high-dimensional space.

In this paper, we introduce our stretch projection technique
and describe an interactive prototype, StretchPlot, used to
explore trajectories within a geotemporal dataset. We de-
scribe in detail a specific use case scenario involving a multi-
dimensional space-time dataset that combines the trajecto-
ries of touring musicians with demographic data related to
the locations of their performances.

2. SPACE-TIME VISUALIZATIONS AS
PROJECTIONS

In examining space-time data, researchers may wish to map
a number of variables (including time, latitude, longitude,
and others) into positions in a shared space. Mapping many
variables into a two-dimensional space is routinely accom-
plished with the use of various dimension reduction and pro-
jection algorithms. Dimension reduction techniques are use-
ful in that they produce high-level views of multidimensional
data, grouping cases by similarity, and potentially revealing
clusters of highly-associated data points. However, dimen-
sion reduction algorithms tend to be somewhat of a “black
box,” in that the viewer may have little intuitive understand-
ing of why a given point was mapped to a particular space,
or the extent to which different variables contributed to the
position of each data point [16]. Rather than pass all data
through a dimension reduction algorithm, an analyst may
want to assign one variable to a particular orientation, or,
for example, orient two variables orthogonally to compare
their relative importance.

Given the definition of “projection” as a mapping of some
set of variables into a lower-dimensional space, any two-



dimensional visualization of three-dimensional space-time
data can be thought of as a projection. Unlike traditional
projections, however, visualizations of space-time data must
deal with trajectories, rather than points. Visualizations
must take trajectories that exist in a multidimensional space
and map them – as connected paths – into a two dimensional
space in some way. For example, StoryFlow [11] maps spa-
tial positions to the vertical axis using a hierarchical order-
ing of spatial distances, while time is mapped linearly to
the horizontal axis. Storygraph [17] arranges the dimen-
sions of latitude and longitude as two vertical parallel co-
ordinates, with time mapped to a horizontal axis between
them. These examples limit themselves to visualizations of
time and space; here, we consider trajectories that move
through a multidimensional space, including variables of in-
terest beyond location.

3. THE IMPORTANCE OF TRAJECTORIES
IN SPACE-TIME VISUALIZATIONS

Space-time data is nested, with multiple events belonging to
any one entity. When visualizing data related to movement,
displaying connections between events is essential. Connec-
tions between events (i.e. with lines) serve two purposes.
Connections define groups of events that are related to a
given entity, and, with space-time data in particular, they
define a temporal ordering, with each event connected only
to the two events before and after it, reflecting the conti-
nuity of time. Groups of points connected by a continuous
line represent events affiliated with an individual entity – in
other words, cases are represented as collections of (ordered)
events. Sequential rajectories – collections of ordered events
belonging to an entity – are the essential unit of any visual-
ization of space-time data. The importance of connections is
particularly essential when displaying movement, and even
moreso when many individual cases are represented on a
single chart. Without the connectivity of a line chart, the
movement of a case from one event to another is lost.

It is important that visualizations of trajectory data include
paths of events connected by lines in order to differentiate
the trajectory (i.e. the series of events) belonging to one case
from the trajectories of other cases. In this context, the con-
nections represent a nominal variable that distinguishes each
case (each collection of events) from other cases. As a visual
encoding,“connection”is included in the hierarchy presented
by Cleveland and McGill [3] as the fourth-most effective en-
coding for nominal variables, behind position, color hue, and
texture. Despite its lower ranking, it seems to be an intu-
itive choice for time-series representations, as the continuity
of time is reflected in the continuity of the path.

Given the accuracy of positional encodings, together with
the necessity of connected paths in trajectory data, an effec-
tive visualization of space-time data will encode trajectories
as connected lines, while encoding events into positions in
a shared space. Traditionally, trajectories are positioned
according to some arrangement of latitude, longitude, and
time. In our work, we allow the placement of trajectories on
a two-dimensional projection plane to be determined by an
arbitrary set of variables.

4. RELATED WORK
Our technique builds off of concepts introduced in prior
work, Star Coordinates [7, 8], that allows multidimensional
data to be positioned according to user-defined axis vectors.
This technique allows a user to map trajectories into a high-
dimensional space that includes the positional variables of
space and time in addition to other variables of interest to
an analyst.

The Star Coordinates technique allows for flexible, user-
driven mappings of multidimensional data into a two-di-
mensional space. In this technique, multiple axes – each
representing one dimension in a dataset – are arranged in a
radial pattern, with each axis having a distinct length and
angle. The length and direction of each axis can be manip-
ulated by the user. Each data point in a multidimensional
dataset is then mapped into a position in two-dimensional
space by treating each axis as a unit vector – the position of
one data point is calculated through a linear combination of
each vector with each data point. The result is an arbitrary
mapping of high-dimensional data into a two-dimensional
space.

Through the interactive arrangement of multiple dimensions,
Star Coordinates have been shown to help users discover
clusters in hierarchically-defined datasets. Additionally, they
are effective in revealing high-dimensional associations be-
tween variables and entities in a multi-factor analysis.

Star Coordinates has primarily been used with static high-
dimensional data, where the entire dataset is visualized as
a cloud of points. Here, we consider a technique similar
to Star Coordinates that is geared specifically towards dy-
namic, spatio-temporal trajectory data, represented as con-
nected linear sequences.

One common solution to the problem of rendering three-
dimensional space-time data is to display a two-dimensional
projection of trajectories embedded in a three-dimensional
cuboid, called a Space-Time Cube (STC) [1, 2]. An STC is a
representation of space-time data that places events within
a hollow rectangular cuboid in three dimensions. Two di-
mensions of the cube represent latitude and longitude, while
the third represents time. In most implementations [1], the
STC can be interactively rotated and scaled. The display
of a space-time cube in two dimensions is the result of a
projection of the three-dimensional cuboid as viewed from
some angle. Different views of an STC are akin to more
traditional graphical representations. If an STC is rotated
such that one of the two axes of geography is orthogonal
to the viewer, it will show a typical time series chart, with
time on the horizontal axis and either latitude or longitude
on the vertical axis. When the axis of time is orthogonal
to the viewer, the view of the STC is a simple map, with
trajectories shown as connected paths.

Drawing on work by MacEachren [12], Andrienko and An-
drienko [1, 2] have done considerable work examining STCs.
STCs are typically used to display the trajectories of a num-
ber of entities across some geographical space and over time.
Many creative implementations of STCs exist, and various
methods of clustering or distorting spatial data are explored,
often with the aim of revealing trends, reducing occlusion, or



Figure 1: The StretchPlot interface. Users are pre-
sented with a list of variables available within the
dataset, as well as a vector manipulation box that
allows the user to manipulate the size and direction
of a selected coordinate axis.

revealing clusters in the data. While STC techniques effec-
tively display three dimensions of space and time, additional
variables must be mapped into other visual attributes, such
as color or size.

Despite a variety of creative examples, implementations of
STCs are almost always rooted in three dimensions – two
dimensions of space and one dimension of time. Additional
variables beyond from space and time are typically mapped
into other visual attributes, such as color or line thickness
[1, p. 6]. In our framework, trajectories can be mapped into
a space defined by any number of variables in a multidi-
mensional dataset – including, but not limited to, space and
time. This builds on the assumption that a substantive anal-
ysis of space-time data will likely include further variables
that may be related to spatiotemporal position.

5. STRETCH PROJECTIONS
Our work extends the Star Coordinates technique and fo-
cuses specifically on space-time trajectory data. As with
Star Coordinates, stretch projections allow users to interac-
tively define the size and direction of a number of vectors,
one for each variable in the dataset (including, but not lim-
ited to, space and time).

Our system is designed to work with trajectory data, in
which sequential events (and the variables associated with
each event) are nested within entities; each entity is asso-
ciated with a number of events, as a temporally ordered
sequence. The position of each event is determined through
a linear combination of each coordinate vector with that
vector’s associated value for the event. Events, in turn, are
connected according to their temporal order, forming tra-
jectories.

The StretchPlot application projects trajectories onto a two-
dimensional projection plane by performing a linear combi-
nation of several coordinate vectors for each event in the
trajectory. Initially, all vectors are of length zero. To ma-
nipulate one of the vectors, users choose from a list of all

variables in the dataset. The user can then click and drag
within a “vector manipulation area” to manipulate the given
vector.

Figure 1 shows the basic StretchPlot interface, with buttons
corresponding to each variable within the dataset, and the
vector manipulation area allowing the user to determine the
size and direction of each coordinate vector. As the vec-
tor is manipulated, the positions of trajectories within the
projection space are updated, resulting in an interactive ma-
nipulation of trajectory data.

In addition to raw trajectory data, an option is provided
to display n-moving average trend lines (where n is cho-
sen interactively by the user). Using moving averages helps
to avoid clutter and occlusion. This is especially true of
human mobility data, where transit (via airplane, for exam-
ple) is often rapid and data are episodic rather than contin-
uous, resulting in many criss-crossing trajectories that oc-
clude each other. The option to include n-moving average
trend lines also stems from the assumption that an analyst
would likely be interested in relative trends – how certain
entities or groups tend to move in relation to each other –
rather than the precise location of an entity at a given time.

The design of this technique was driven by the fact that
space-time data is inherently multidimensional, and it is as-
sumed that empirical analyses that utilize trajectory data
will be concerned with some set of variables beyond spatio-
temporal position. Along with space and time, additional
variables (as long as they are interval or ratio scale) are used
to determine the positions of trajectories, and the relative
contribution and direction of any one variable is interactively
controlled by the user.

The flexibility of this technique allows for a variety of config-
urations. Notably, when only the three vectors correspond-
ing to latitude, longitude, and time are displayed (i.e. when
all other vectors are of length zero), the display is akin to
a projection of an STC. Likewise, classic time-series plots
can be created by simply placing two vectors orthogonally.
Aside from allowing for such flexibility, the user interaction
demanded by StrechPlot likely aids in the perception of cer-
tain high-dimensional structures, as suggested by prior re-
search related to Star Coordinates [8].

The interactive manipulation of multiple dimensions is a key
compontent of our application. Aligning two or more di-
mensions in similar directions results in the conflation of
variables, and one will not be able to determine the extent
to which each variable is contributing to the position of a
trajectory. However, through interaction, these relative con-
tributions can be revealed visually through their movement.
Interactively manipulating the coordinate axes of a multidi-
mensional space changes the relative distance between cases
(and between trajectories), revealing the relative contribu-
tions of a variable.

Mapping variables into spatial positions, rather than other
visual attributes, has two key advantages. First, beyond a
small number of variables, one will “run out” of attributes
(e.g. size, color) available to be mapped into. Second, prior
research [3, 13] has suggested that visual encodings exist in



a hierarchy, where different encodings are interpreted with
varying degrees of accuracy. Position, above other encodings
such as size or color, is consistently found to lead to the most
accurate interpretation of interval and ratio data. Thus,
mapping additional variables into other visual attributes
aside from position implies a hierarchy of variables, implic-
itly suggesting that certain dimensions are more salient than
others. In an exploratory analysis, one may wish to avoid
implying such a hierarchy.

The aim here is to generate a better understanding of the
multidimensional nature of the data through the detection
and observation of clustered trajectories. Stretch Plot thus
serves as a means to visually explore clustered trajectories
that exist within a high-dimensional space of geographic,
economic, and social data that is evolving through time.

6. CASE STUDY
StretchPlot was used to explore a large dataset related to
traveling musicians. Data include the date and geographic
location of performances given by over 3000 musicians over
the span of four years. In addition, social and demographic
data – such as median household income and racial distri-
butions – was collected based on the geographic coordinates
of each performance location.

Exploratory analyses were based on a line of sociological re-
search into the evolution of genre by Jennifer Lena, who the-
orizes that musical genres exist as one of four different“genre
types” [10]. Each genre type is defined by certain cultural
and economic contexts. For example, industry-based gen-
res are driven and marketed by large, wealthy corporations,
with extensive ties to the production and entertainment in-
dustries. On the other hand, “avant-garde” genres consist of
artists who perform in small, un-commercialized venues to
meager audiences with little-to-no financial backing.

Importantly, Lena’s framework is also dynamic, positing
that genres evolve through time – genres follow trajectories
through a multidimensional space that includes geographic,
economic, and social variables. Genres themselves exist as
trajectories. Questions that arise from Lena’s framework are
based on combinations of these variables: Which economic
contexts are associated with high popularity? Do certain
genres prosper more in certain geographical areas? Or with
certain racial distributions?

Prior research has examined the evolution of certain genres
over time, such as the spread of surf music out of southern
California in the 1960’s [14], and the movement of Jazz mu-
sicians between major US cities [15]. These examples are
essentially case studies, targeting specific genres, and they
aim to either provide support for a-priori hypotheses or to
simply document historical trends. Stretch projections, on
the other hand, are geared towards a much more exploratory
approach.

6.1 Discovering multidimensional Trajectory
Positions

Figure 2 illustrates five views of StretchPlot using event data
from thirty musicians and bands over the span of six years,
with a total of over 2,300 events. In Figure 2(A), raw tra-

jectory data is shown, resulting in a high amount of over-
lap and occlusion. Figure 2(B) shows a simplified view of
the data, achieved by calculating 30-day moving averages
of each artists’ trajectory. Despite the use of this smooth-
ing technique, trajectories still greatly occlude each other,
as they are “clumped” around an overall average event lo-
cation. However, this view reveals that three of the tra-
jectories stretch much further west than the others. These
three trajectories have been highlighted for the purposes of
illustration.

Figure 2(C) shows the result of manipulating the “time” co-
ordinate vector so that it extends downward and to the right.
Although StretchPlot only places data in two dimensions,
Figure 2(C) is akin to an orthogonal projection of a three-
dimensional STC. Comparing Figure 2(B) to 1(C) reveals
the relative temporal order of events. In terms of average
performance locations, the blue artist moved west over time
before moving back towards the majority of trajectories in
the sample; the red artist followed a similar pattern, yet their
overall trajectory occurred later in time; the green artist first
moved east before returning west, and finally moving back
east. Without the added dimension of time, the relative
temporal location of each trajectory would be impossible to
discern.

Figure 2(D) shows the result of manipulating the “income”
coordinate vector so that it extends upward. In this case, the
“income” variable represents the median household income
of the census block group in which each event occurred [18].
By comparing Figure 2(B) to 2(D), it is seen that when
they performed in the west, the artists highlighted in red
and blue performed, on average, at venues located in rela-
tively high-income neighborhoods as compared to the artist
highlighted in green. Finally, Figure 2(E) includes the four
variables of Latitude, Longitude, Time, and Income. Note
the increased distance between the red and green trajecto-
ries between Figure 2(C) and Figure 2(E), resulting from
the fact that the green trajectory is situated in a relatively
lower “income space.”

Thus, a multidimensional story of three traveling artists can
be told. All three artists, at some point in their careers, per-
formed in locations that were located much more to the west
relative to other artists in this sample. First, the blue artist
“moved”west before returning back east (note that here the
concept of “motion” is indirect, and refers to an artist’s aver-
age performance location). The red artist followed a similar
pattern – moving west and performing in relatively affluent
neighborhoods – albeit after the blue artist. The green artist
has the most dynamic trajectory. They began performing in
relatively western locations – and in affluent neighborhoods
– before moving east and performing in neighborhoods with
relatively lower income. They later moved back west, but
they performed in neighborhoods with relatively low house-
hold incomes.

In coming to these conclusions, it is critical to note the effect
of movement produced by user interaction, which serves as a
means of comparison across dimensions in the dataset. With
only one of the the plots in Figure 2 alone, one would not
be able to discern important multidimensional relationships.
For example Figure 2(E) conflates many variables, and ex-



Figure 2: Five views of Stretch Plot, revealing multivariate trends amongst a number of trajectories. Figure
A shows raw trajectory data. Figure B shows 30-day moving averages, with three trajectories highlighted.
Figure C is the result of incorporating time as a coordinate vector stretching downwards, akin to an STC.
Figure D adds a coordinate vector for income parallel to latitude. Figure E is the result of incorporating all
four coordinate vectors of time, space, and income into a shared trajectory space.



actly which variables are contributing to a given trajectory’s
position cannot be determined. However, by comparing Fig-
ure 2(E) to Figure 2(C) – which occurs through user inter-
action – one can observe relative differences in position that
occur as a result the addition of a variable.

7. DISCUSSION
Our case study provides an example of how complex mul-
tidimensional relationships can be discovered with stretch
projections via interaction with our StretchPlot application.
multidimensional relationships are revealed in two ways:
First, each variable in a multidimensional dataset is encoded
by position (i.e. by the position of a trajectory), rather than
other attributes such as color or size. Second, the interac-
tive nature of StretchPlot reveals the relative contribution
of each variable to trajectory positions.

7.1 Visual Encodings of Multi-
Dimensional Space-Time Data

It is common for data visualizations to assign variables to
various visual encodings, such as position, size, or color.
However, visual encodings can differ greatly in terms of
how accurately they are perceived. Cleveland and McGill
[3] propose an ordered hierarchy of visual encodings, based
on how accurately viewers can determine the quantitative
relationships that the encodings represent. A number of ex-
periments confirm their hypothesis, suggesting that different
graphical presentations exist in a ranked hierarchy, where
different visual encodings are interpreted with varying de-
grees of accuracy [13]. In particular, they find that mapping
data to position – rather than other attributes such as length
or angle – is one of the most perceptually accurate methods
of visualizing quantitative data. After confirming that vi-
sual mappings exist in an ordered hierarchy, Cleveland and
McGill [3] suggest that effective graphs will utilize visual
encodings as high up in the hierarchy as possible.

Given such a hierarchy of visual encodings, choosing to map
two variables into two different visual encodings implies a
hierarchy amongst variables. In an exploratory study, how-
ever, an analyst may wish to be agnostic to the importance
of variables, and may not want to imply that any one vari-
able is more important than another. In this sense, an un-
biased mapping of variables to visual attributes is achieved
by mapping all variables into the same visual encoding si-
multaneously.

8. FUTURE WORK
Similar to Star Coordinates [8], our technique is highly flex-
ible. However, future implementations could allow for more
structured configurations to be chosen by the user. As seen
in our case study, the importance of interaction is in reveal-
ing relative differences across several different configurations
of multiple dimensions. Instead of allowing the user to place
coordinate axes in any arbitrary configuration, a more struc-
tured approach might simply allow the user to interactively
transition between two pre-determined configurations. Fu-
ture work might also incorporate algorithmic techniques re-
lated to related to the detection of similar event sequences [9,
19, 20], rather than relying on subjective judgements alone.

A well-designed user study will be crucial in order to verify

the utility of our design. An important question is whether
typical users will be able to independently reach similar con-
clusions about multidimensional trajectory data. A more
detailed analysis would aim to identify which interaction
techniques are most suited to revealing certain relationships
for structures in the data. For instance, the use of motion
might be well-suited to demonstrate the effect of one vari-
able in a multidimensional dataset [4, 5, 6].

9. CONCLUSION
While a majority of space-time visualizations are concerned
only with locations in physical space and time, the work
presented here represents a first attempt at a flexible vi-
sualization of trajectories that exist in a multidimensional
space. Our technique reveals relative differences amongst
groups of trajectories in a high-dimensional space through
the interactive manipulation of coordinate axes. As we con-
tinue to refine and analyze our technique, we hope to develop
a comprehensive application for the exploratory analysis of
multidimensional trajectory data.
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