
1077-2626 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 1, JANUARY 2018 913

Manuscript received 31 Mar. 2017; accepted 1 Aug. 2017.
Date of publication 28 Aug. 2017; date of current version 1 Oct. 2017.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2017.2744459

Activity-Centered Domain Characterization for
Problem-Driven Scientific Visualization

G. Elisabeta Marai

Abstract—Although visualization design models exist in the literature in the form of higher-level methodological frameworks, these
models do not present a clear methodological prescription for the domain characterization step. This work presents a framework and
end-to-end model for requirements engineering in problem-driven visualization application design. The framework and model are
based on the activity-centered design paradigm, which is an enhancement of human-centered design. The proposed activity-centered
approach focuses on user tasks and activities, and allows an explicit link between the requirements engineering process with the
abstraction stage—and its evaluation—of existing, higher-level visualization design models. In a departure from existing visualization
design models, the resulting model: assigns value to a visualization based on user activities; ranks user tasks before the user data;
partitions requirements in activity-related capabilities and nonfunctional characteristics and constraints; and explicitly incorporates
the user workflows into the requirements process. A further merit of this model is its explicit integration of functional specifications, a
concept this work adapts from the software engineering literature, into the visualization design nested model. A quantitative evaluation
using two sets of interdisciplinary projects supports the merits of the activity-centered model. The result is a practical roadmap to the
domain characterization step of visualization design for problem-driven data visualization. Following this domain characterization model
can help remove a number of pitfalls that have been identified multiple times in the visualization design literature.

Index Terms—Design studies, Tasks and requirements analysis, Visualization models, Domain characterization, Activity-centered
design, Functional specifications

1 INTRODUCTION

Visualization relies significantly on data from other domains, from
biomedicine to computational fluid dynamics. As we train and train
others into research methodology, we almost always train also into
interdisciplinary collaboration [35]. These interdisciplinary visualiza-
tion projects may aim to improve or adapt an established visualization
technique, or to develop a totally innovative visualization tool with
no obvious precedent. Regardless of the aim of the project, the do-
main experts’ needs, tasks and goals, the conditions under which the
visualization will be used, and the constraints on the visualization
performance have to be first discussed, characterized, clarified, and
sometimes re-scoped. In existing visualization design models, this first
step is referred to as “characterizing the task and data in the vocabu-
lary of the problem domain” [38], and is the visualization equivalent
of the “requirements engineering” first step in the Human Computer
Interaction (HCI) design process or in the software design process. Sub-
sequent layers of the visualization design process, from visual encoding
to implementation, depend on this first step of domain characterization.

Characterizing the application domain presents considerable chal-
lenges for both visualization designers and domain experts, due to
the inherently exploratory nature of the domain problems and to the
variety of data involved. Some of the challenges inherent in bridging
the gaps of knowledge and interest between designers and users are
discussed by van Wijk [55]. The designers may not have sufficient
domain knowledge to extract or even understand the expert’s needs.
They may have trouble abstracting fuzzy needs into visualization terms,
and aligning those needs with their own research interests. As a result,
designers sometimes end up solving the wrong problem, or using an
uninformative visual encoding. From the other end, the experts may
have limited time available to “apprentice” a visualization researcher.
They may not notice what they do, may not know how to articulate what
they do, and may misrepresent reality, precisely because the domain
activities seem complex and fuzzy [39].

• G.E. Marai is with the Electronic Visualization Laboratory at University of
Illinois at Chicago. E-mail: g.elisabeta.marai@gmail.com.

While general prescriptions for requirements engineering do exist,
domain characterization in scientific visualization differs in multiple
ways from HCI or software engineering, and, to a minor extent, even
from the equivalent step in information visualization. First, spatial
data can seldom be imitated outside the target domain. Data also often
requires an upfront commitment to potential cleaning, integration, and
pre-processing, as well as understanding the mathematical or compu-
tational underpinnings of the domain problem. This constraint often
delays the production of a prototype. Second, domain experts have
limited availability, when compared to the general public. There is also
less emphasis on user feelings and emotions, compared to HCI. When
compared to general software design, there is additional emphasis on
the relevance of the human visual system and perception to the user
tasks. Last but not least, the field emphasizes novelty in either the
problem or in the approach. This set of differences makes it difficult to
articulate how the visualization domain characterization process relates
exactly to other models in the literature, for example Human-Centered-
Design (HCD). HCD models implement a cycle with four sequential
steps: observation, followed by ideation, followed by prototyping, and
only then followed by user testing [40].

A step further, although visualization design models exist in the
literature [14, 24, 37, 38, 45, 52, 57] in the form of higher-level method-
ological frameworks, these models do not present a methodological
description of each step to be followed. For example, with respect to the
domain characterization step, no model discusses how to improve the
tasks abstraction process when the user tasks are seemingly ill-defined.

This work presents a next step to the higher level frameworks, and
goes deeper into a specific model for the initial step of domain charac-
terization in visualization. The model is based on the activity-centered
design paradigm [40], which is inspired by Activity Theory [16,25,56].
Activity-centered design focuses on activities, not the individual per-
son. In the 2013 assessment of Don Norman (The Design of Everyday
Things, 3rd edition), the underlying principle is that “since people’s ac-
tivities around the world tend to be similar, and because people are quite
willing to learn things that appear to be essential to the activity, activity
should be allowed to define the product and its structure” [40]. Since
the activities are performed by people and for people, activity-centered
design is an enhancement of HCD [40].

The model proposed in this work under the activity-centered frame
is organized in four chronological stages (Fig. 1): 1) Notification; 2)
Activity Inquiry; 3) Establishing Context; and 4) Analysis, Specifi-

914 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 1, JANUARY 2018

cation and Validation. As part of the activity-centered approach, this
model recasts the problem of domain characterization into the larger,
and better studied, framework of software development and functional
specifications. The software development field, in which scientific vi-
sualization is partly rooted, has been confronting similar challenges to
problem-driven visualization research, and may offer solutions to com-
mon visualization pitfalls. In particular, the activity-centered paradigm
allows an explicit integration of the concept of workflows and func-
tional specs into the existing Human-Centered visualization design
models.

The activity-centered model focuses on a specific technique for engi-
neering requirements for visualization design, and provides a practical
roadmap and a specific agenda for the process. This model has been de-
rived from a collective experience of building multiple award-winning,
user-adopted visualization tools, as well as several flawed projects,
and is informed by the visualization, human computer interaction and
software engineering literature. While this model was developed based
on experience mostly with scientific visualization projects, the mes-
sages and lessons within the model may be applicable to the wider
visualization community. The contributions of this work are:

• An activity-centered framework and an end-to-end network model
for the requirements process in visualization design. The frame-
work is based on the activity-centered design paradigm. In a
departure from existing visualization design models, the resulting
model: a) assigns value to a visualization based on user activities;
b) ranks user tasks before the user data; c) partitions requirements
in activity-related capabilities and nonfunctional characteristics
and constraints; d) explicitly incorporates the user workflows, as
a first-class citizen, into the requirements process; and e) estab-
lishes the need for visualization early in the design process, based
on the user activities.

• An extension of the nested visualization design model [38]
through the explicit integration of functional specifications as
a systematic means to validate the domain characterization and to
communicate back with the user, prior to the prototyping stage.
Functional specifications (not related to the functional program-
ming paradigm) originate from the software development field;
they have not been integrated explicitly before with HCD models.
Furthermore, this model: a) articulates the difference between
requirements (what the user needs) and functional specifications
(what the designer intends to do); b) ensures the functional specs
include what the product will not do; c) mandates that the func-
tional specs be reviewed by the user; and d) promotes practical
advice on engaging spec writing, based on the user workflows.

• A quantitative evaluation and qualitative discussion of the merits
of this framework, and of the fit of the model with existing visu-
alization design frameworks. In particular, this work shows how
performing the domain characterization step correctly through the
activity-centered model can remove a number of pitfalls that have
been identified multiple times in the visualization design literature,
including lack of real data and solving the wrong problem.

2 BACKGROUND AND VOCABULARY

Domain Characterization. Domain characterization is the first stage
of visualization design, where visualization design denotes developing
a digital system that allows users to find insight into data through visual
representations and interaction methods. During this characterization
stage, the visualization designer must learn about the tasks and data of
target users in some particular target domain [38], similar to the process
of establishing requirements in software engineering and HCI. The
visualization literature uses, in fact, interchangeably the terms “domain
characterization” and “requirements elicitation”. The output of this
stage is a set of requirements about the visualization design, which may
also include information about the user needs, tools, or stakeholders.
Requirements. A “requirement” is a statement about an intended
product that specifies what the product should do or how it should

perform [42]. The purpose of establishing requirements is to collect
relevant, sufficient, and accurate data so that a core set of requirements
can be established. This core requirements set can then be used as
a starting point for the visualization design process, by enabling the
designer to first discover and define the right problem, and second,
develop and deliver the right solution [40]. Requirements may be func-
tional—requirements which describe product capabilities (the “doing”
of a system), and nonfunctional—requirements which describe the
characteristics and constraints for the product’s behavior (the “being”
of a system).
Techniques for Establishing Requirements. Three main techniques
are used for gathering data when establishing requirements: interviews,
questionnaires, and observation. Additional techniques include focus
groups, studying documentation, researching similar products, and con-
textual inquiry—an approach which can be viewed as an unstructured
interview taking place at the user’s workplace, and during which the
designer works as an apprentice to the user [3, 20]. Rogers et al. [42]
provide a detailed description of each approach. Although these basic
techniques form a small set, they are flexible and can be combined and
extended in multiple ways. Rogers et al. [42] argue that an informal,
open-ended interview is the best approach when aiming to gain first
impressions about a problem or to explore issues—which is often the
case in the domain characterization stage for problem-driven research.
Indeed, open-ended interviewing is often used in the design of visualiza-
tion tools, alongside observation, although a roadmap for this process
has not been discussed or proposed before.
Tasks and Activity Terminology. As noted by Munzner [38], the
word task is overloaded in the visualization literature, where it has
been used at multiple levels of abstraction and granularity. In some
works [38,44] the terms problem, operation, and task are used to denote
respectively: a task described in domain terms, an abstract task, and a
task that crosscuts these two levels.

This work uses the activity-centered design definitions: with increas-
ing granularity, users have activities (problems) and tasks [40]. An
activity is a high-level structure such as “go shopping” or “understand
the relationship between E.coli genomes”, while a task is a lower-level
component of an activity such as “drive to market”, “find a shopping
basket”, “use a shopping list to guide the purchases”, respectively “load
the complete E.coli dataset (673 genomes)”, “locate an ortholog cluster
in the 673 genomes”, “examine the gene neighborhood of the ortholog
cluster” [2] etc. An activity is a collected set of tasks, but all performed
together toward a common high-level goal. A task is an organized,
cohesive set of operations directed toward a single, low-level goal.
Functional Specifications. Functional specifications (sometimes
called specs) describe how a product will work as viewed entirely from
the user’s perspective. A functional specification describes features,
and it does not concern itself with how the product is implemented.
Functional specs should not be confused with a technical specification,
which describes the internal implementation of the program (data struc-
tures, relational database models, choice of programming languages
and tools, algorithms, etc.) [6]. Furthermore, functional specs are a
different concept than formal specifications generated through a func-
tional programming paradigm [4, 10, 26]. The functional programming
paradigm is a style of building the structure and elements of computer
programs that treats computation as the evaluation of mathematical
functions. In contrast, functional specs capture what a system does (or
its “function”).
Domain Characterization Prerequisites. This work describes—from
a visualization design perspective—a formal script and model for guid-
ing the requirements session. This work does not address the key issues
that are prerequisites for any data gathering session: goal setting, iden-
tifying participants, or the relationship between the interviewer and
the data provider; these issues have been previously discussed in the
existing literature [8, 15, 44].

3 NETWORK MODEL

Given the usually ill-defined nature of problems tackled in visualization
research, domain characterization is arguably best served by an infor-
mal, open-ended interview approach [48]. Such interviews generate

Fig. 1. Activity-centered network model for domain characterization in problem-driven scientific visualization. The model has four chronological steps,
color-mapped in the figure. Critical nodes (Tasks, Flow, Probes, Data Access etc.) are heavier outlined; these components can act as gates in this
model, and are sufficient reason to abort or postpone the prototyping of a project. Dashed nodes are optional. In this network model, arrows indicate
unidirectional flow, while arcs indicate bidirectional flow.

rich information that is often interrelated and complex—in other words,
information that gives a deep understanding of the topic. The model
proposed in this work follows an open-ended interview approach.

This section defines a first model for domain characterization. The
model can serve as a basic script to the main topics to be covered while
engineering requirements. This model is based on the activity-centered
design paradigm [40], which is an enhancement of the human-centered
design paradigm. The paradigm is supported and reinforced by the col-
lective Software Engineering Body of Knowledge [6], where emphasis
in the software design and development process has been placed, for
at least two decades, on the user point of view of the functioning of a
software system.

This activity-centered model (Fig. 1) is organized in four chronolog-
ical steps: 1) Notification; 2) Activity Inquiry; 3) Establishing Context;
4) Analysis, Specification and Validation. The overall four-step struc-
ture, and in particular the emphasis on steps 1 and 4, are adapted from
the software engineering literature. However, this work develops and
specifies steps 2 and 3—the core of the activity-centered model pre-
sented here—beyond the high-level software engineering framework,
for the specific purpose of problem-driven visualization design. Step
4 marks a critique and an extension of the nested visualization design
model, through the integration of functional specifications. The sec-
tions below describe each component of this model, and conclude with
a summary of the model and its output.

3.1 Notification

Why: The primary purpose of this stage is to allow the domain experts
time to prepare for the tasks and workflow component of the activity-
centered model. The notification further allows the designer to set the
context for the session, and to make the most of the limited availability
of experts.
How: The notification is emailed in advance. In the activity-design
experience, notifications issued at least a few days and up to a week in
advance give the most effective results. The notification specifies how
the interview will be run, who will participate, how long it will take
to complete (a typical interview lasts 50-60 minutes), and the agenda
for the requirements session. In accordance with the activity paradigm,
the notification explicitly asks the users to think of twenty example
tasks, as well as scenarios, to share during the meeting (Sec. 3.2.2).
The request is accompanied by examples of correct and incorrect task
and flow granularity. At the start of the meeting, introductions and a
short review of the agenda are appropriate. The interviewer also lets
the users know s/he will be taking notes; taping may seem efficient, but
it is usually not [15].
Output: The result of this component is an agenda for the session. On
the user side, the users are, ideally, brainstorming about example tasks
and workflows.

Model Perspective: From the activity-centered perspective, the notifi-
cation explicitly asks the users to think of example activities to share
during the meeting. The users will typically keep the request in mind
and refine their response during their daily workflow, in the context of
their own work.

3.2 Activity Inquiry
The second step, specified here for visualization design, revolves around
four core components: Humans, Tasks, Data, Flow. The components
are interconnected and feeding each other. While the conversation may
flow freely along new lines of inquiry that were not anticipated, the
interviewer needs to make sure that questions along these four topics
are asked, and that the answers are mapped to each component.

The Humans component describes the overall potential use of the
system, and originates from the human-centered roots of visualization
design [27, 52, 54, 57]. Because of the experts’ familiarity with the
default concept of “users”, the activity model uses this component for
the warmup, at the beginning of the requirements process.

The Tasks and Data components are present in most visualization
design models [9, 38, 41, 48, 53]. In a departure from existing models,
the activity-centered model proposed here ranks Tasks before Data.
Tasks are a core component of the activity-centered paradigm, and they
constitute the central, focal point of the resulting model.

In further accordance with the activity framework, the model ex-
plicitly incorporates user workflows into the design process. The Flow
component describes the flow of data among tasks, as well as the map-
ping of data and users to the tasks. The Flow component is explicitly
included in this model because of its unparalleled potential to reveal
previously ignored tasks and data, hidden data sources, unusual user
mappings to data and tasks, as well as the sequencing of tasks along
activities. The Flow can be further used to generate functional specifica-
tions, as well as later in the design process, during the user evaluation of
a design. The sections below describe each of these four components.

3.2.1 Humans
Why: The Humans component of the model facilitates a soft warmup
of the conversation. The information gathered in these first minutes of
conversation also helps the designer better understand both the tasks
and data, and the potential impact of the project.
How: Questions asked as part of this component include: “How many
users would use this visualization?” “Are the users part of the intervie-
wee’s group, other groups on site, other groups at remote locations?”,
“What background do these users have?”, “How frequently would these
people use the visualization?”, “For how long?”, “In what setting—in
the lab, at home, during group meetings, anywhere?”. General infor-
mation about current software and the hardware the visualization will
be used on is also helpful, in particular with respect to screen size, or
usage in a location with no networking.

MARAI: ACTIVITY-CENTERED DOMAIN CHARACTERIZATION FOR PROBLEM-DRIVEN SCIENTIFIC VISUALIZATION 915

cation and Validation. As part of the activity-centered approach, this
model recasts the problem of domain characterization into the larger,
and better studied, framework of software development and functional
specifications. The software development field, in which scientific vi-
sualization is partly rooted, has been confronting similar challenges to
problem-driven visualization research, and may offer solutions to com-
mon visualization pitfalls. In particular, the activity-centered paradigm
allows an explicit integration of the concept of workflows and func-
tional specs into the existing Human-Centered visualization design
models.

The activity-centered model focuses on a specific technique for engi-
neering requirements for visualization design, and provides a practical
roadmap and a specific agenda for the process. This model has been de-
rived from a collective experience of building multiple award-winning,
user-adopted visualization tools, as well as several flawed projects,
and is informed by the visualization, human computer interaction and
software engineering literature. While this model was developed based
on experience mostly with scientific visualization projects, the mes-
sages and lessons within the model may be applicable to the wider
visualization community. The contributions of this work are:

• An activity-centered framework and an end-to-end network model
for the requirements process in visualization design. The frame-
work is based on the activity-centered design paradigm. In a
departure from existing visualization design models, the resulting
model: a) assigns value to a visualization based on user activities;
b) ranks user tasks before the user data; c) partitions requirements
in activity-related capabilities and nonfunctional characteristics
and constraints; d) explicitly incorporates the user workflows, as
a first-class citizen, into the requirements process; and e) estab-
lishes the need for visualization early in the design process, based
on the user activities.

• An extension of the nested visualization design model [38]
through the explicit integration of functional specifications as
a systematic means to validate the domain characterization and to
communicate back with the user, prior to the prototyping stage.
Functional specifications (not related to the functional program-
ming paradigm) originate from the software development field;
they have not been integrated explicitly before with HCD models.
Furthermore, this model: a) articulates the difference between
requirements (what the user needs) and functional specifications
(what the designer intends to do); b) ensures the functional specs
include what the product will not do; c) mandates that the func-
tional specs be reviewed by the user; and d) promotes practical
advice on engaging spec writing, based on the user workflows.

• A quantitative evaluation and qualitative discussion of the merits
of this framework, and of the fit of the model with existing visu-
alization design frameworks. In particular, this work shows how
performing the domain characterization step correctly through the
activity-centered model can remove a number of pitfalls that have
been identified multiple times in the visualization design literature,
including lack of real data and solving the wrong problem.

2 BACKGROUND AND VOCABULARY

Domain Characterization. Domain characterization is the first stage
of visualization design, where visualization design denotes developing
a digital system that allows users to find insight into data through visual
representations and interaction methods. During this characterization
stage, the visualization designer must learn about the tasks and data of
target users in some particular target domain [38], similar to the process
of establishing requirements in software engineering and HCI. The
visualization literature uses, in fact, interchangeably the terms “domain
characterization” and “requirements elicitation”. The output of this
stage is a set of requirements about the visualization design, which may
also include information about the user needs, tools, or stakeholders.
Requirements. A “requirement” is a statement about an intended
product that specifies what the product should do or how it should

perform [42]. The purpose of establishing requirements is to collect
relevant, sufficient, and accurate data so that a core set of requirements
can be established. This core requirements set can then be used as
a starting point for the visualization design process, by enabling the
designer to first discover and define the right problem, and second,
develop and deliver the right solution [40]. Requirements may be func-
tional—requirements which describe product capabilities (the “doing”
of a system), and nonfunctional—requirements which describe the
characteristics and constraints for the product’s behavior (the “being”
of a system).
Techniques for Establishing Requirements. Three main techniques
are used for gathering data when establishing requirements: interviews,
questionnaires, and observation. Additional techniques include focus
groups, studying documentation, researching similar products, and con-
textual inquiry—an approach which can be viewed as an unstructured
interview taking place at the user’s workplace, and during which the
designer works as an apprentice to the user [3, 20]. Rogers et al. [42]
provide a detailed description of each approach. Although these basic
techniques form a small set, they are flexible and can be combined and
extended in multiple ways. Rogers et al. [42] argue that an informal,
open-ended interview is the best approach when aiming to gain first
impressions about a problem or to explore issues—which is often the
case in the domain characterization stage for problem-driven research.
Indeed, open-ended interviewing is often used in the design of visualiza-
tion tools, alongside observation, although a roadmap for this process
has not been discussed or proposed before.
Tasks and Activity Terminology. As noted by Munzner [38], the
word task is overloaded in the visualization literature, where it has
been used at multiple levels of abstraction and granularity. In some
works [38,44] the terms problem, operation, and task are used to denote
respectively: a task described in domain terms, an abstract task, and a
task that crosscuts these two levels.

This work uses the activity-centered design definitions: with increas-
ing granularity, users have activities (problems) and tasks [40]. An
activity is a high-level structure such as “go shopping” or “understand
the relationship between E.coli genomes”, while a task is a lower-level
component of an activity such as “drive to market”, “find a shopping
basket”, “use a shopping list to guide the purchases”, respectively “load
the complete E.coli dataset (673 genomes)”, “locate an ortholog cluster
in the 673 genomes”, “examine the gene neighborhood of the ortholog
cluster” [2] etc. An activity is a collected set of tasks, but all performed
together toward a common high-level goal. A task is an organized,
cohesive set of operations directed toward a single, low-level goal.
Functional Specifications. Functional specifications (sometimes
called specs) describe how a product will work as viewed entirely from
the user’s perspective. A functional specification describes features,
and it does not concern itself with how the product is implemented.
Functional specs should not be confused with a technical specification,
which describes the internal implementation of the program (data struc-
tures, relational database models, choice of programming languages
and tools, algorithms, etc.) [6]. Furthermore, functional specs are a
different concept than formal specifications generated through a func-
tional programming paradigm [4, 10, 26]. The functional programming
paradigm is a style of building the structure and elements of computer
programs that treats computation as the evaluation of mathematical
functions. In contrast, functional specs capture what a system does (or
its “function”).
Domain Characterization Prerequisites. This work describes—from
a visualization design perspective—a formal script and model for guid-
ing the requirements session. This work does not address the key issues
that are prerequisites for any data gathering session: goal setting, iden-
tifying participants, or the relationship between the interviewer and
the data provider; these issues have been previously discussed in the
existing literature [8, 15, 44].

3 NETWORK MODEL

Given the usually ill-defined nature of problems tackled in visualization
research, domain characterization is arguably best served by an infor-
mal, open-ended interview approach [48]. Such interviews generate

Fig. 1. Activity-centered network model for domain characterization in problem-driven scientific visualization. The model has four chronological steps,
color-mapped in the figure. Critical nodes (Tasks, Flow, Probes, Data Access etc.) are heavier outlined; these components can act as gates in this
model, and are sufficient reason to abort or postpone the prototyping of a project. Dashed nodes are optional. In this network model, arrows indicate
unidirectional flow, while arcs indicate bidirectional flow.

rich information that is often interrelated and complex—in other words,
information that gives a deep understanding of the topic. The model
proposed in this work follows an open-ended interview approach.

This section defines a first model for domain characterization. The
model can serve as a basic script to the main topics to be covered while
engineering requirements. This model is based on the activity-centered
design paradigm [40], which is an enhancement of the human-centered
design paradigm. The paradigm is supported and reinforced by the col-
lective Software Engineering Body of Knowledge [6], where emphasis
in the software design and development process has been placed, for
at least two decades, on the user point of view of the functioning of a
software system.

This activity-centered model (Fig. 1) is organized in four chronolog-
ical steps: 1) Notification; 2) Activity Inquiry; 3) Establishing Context;
4) Analysis, Specification and Validation. The overall four-step struc-
ture, and in particular the emphasis on steps 1 and 4, are adapted from
the software engineering literature. However, this work develops and
specifies steps 2 and 3—the core of the activity-centered model pre-
sented here—beyond the high-level software engineering framework,
for the specific purpose of problem-driven visualization design. Step
4 marks a critique and an extension of the nested visualization design
model, through the integration of functional specifications. The sec-
tions below describe each component of this model, and conclude with
a summary of the model and its output.

3.1 Notification

Why: The primary purpose of this stage is to allow the domain experts
time to prepare for the tasks and workflow component of the activity-
centered model. The notification further allows the designer to set the
context for the session, and to make the most of the limited availability
of experts.
How: The notification is emailed in advance. In the activity-design
experience, notifications issued at least a few days and up to a week in
advance give the most effective results. The notification specifies how
the interview will be run, who will participate, how long it will take
to complete (a typical interview lasts 50-60 minutes), and the agenda
for the requirements session. In accordance with the activity paradigm,
the notification explicitly asks the users to think of twenty example
tasks, as well as scenarios, to share during the meeting (Sec. 3.2.2).
The request is accompanied by examples of correct and incorrect task
and flow granularity. At the start of the meeting, introductions and a
short review of the agenda are appropriate. The interviewer also lets
the users know s/he will be taking notes; taping may seem efficient, but
it is usually not [15].
Output: The result of this component is an agenda for the session. On
the user side, the users are, ideally, brainstorming about example tasks
and workflows.

Model Perspective: From the activity-centered perspective, the notifi-
cation explicitly asks the users to think of example activities to share
during the meeting. The users will typically keep the request in mind
and refine their response during their daily workflow, in the context of
their own work.

3.2 Activity Inquiry
The second step, specified here for visualization design, revolves around
four core components: Humans, Tasks, Data, Flow. The components
are interconnected and feeding each other. While the conversation may
flow freely along new lines of inquiry that were not anticipated, the
interviewer needs to make sure that questions along these four topics
are asked, and that the answers are mapped to each component.

The Humans component describes the overall potential use of the
system, and originates from the human-centered roots of visualization
design [27, 52, 54, 57]. Because of the experts’ familiarity with the
default concept of “users”, the activity model uses this component for
the warmup, at the beginning of the requirements process.

The Tasks and Data components are present in most visualization
design models [9, 38, 41, 48, 53]. In a departure from existing models,
the activity-centered model proposed here ranks Tasks before Data.
Tasks are a core component of the activity-centered paradigm, and they
constitute the central, focal point of the resulting model.

In further accordance with the activity framework, the model ex-
plicitly incorporates user workflows into the design process. The Flow
component describes the flow of data among tasks, as well as the map-
ping of data and users to the tasks. The Flow component is explicitly
included in this model because of its unparalleled potential to reveal
previously ignored tasks and data, hidden data sources, unusual user
mappings to data and tasks, as well as the sequencing of tasks along
activities. The Flow can be further used to generate functional specifica-
tions, as well as later in the design process, during the user evaluation of
a design. The sections below describe each of these four components.

3.2.1 Humans
Why: The Humans component of the model facilitates a soft warmup
of the conversation. The information gathered in these first minutes of
conversation also helps the designer better understand both the tasks
and data, and the potential impact of the project.
How: Questions asked as part of this component include: “How many
users would use this visualization?” “Are the users part of the intervie-
wee’s group, other groups on site, other groups at remote locations?”,
“What background do these users have?”, “How frequently would these
people use the visualization?”, “For how long?”, “In what setting—in
the lab, at home, during group meetings, anywhere?”. General infor-
mation about current software and the hardware the visualization will
be used on is also helpful, in particular with respect to screen size, or
usage in a location with no networking.

916 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 1, JANUARY 2018

Output: The result of this component is an itemized list of project and
user characteristics: how many users there are, what type of background
they have, who will be performing the activities, how often, for how
long, and in what setting.
Model Perspective: The visualization methodology is often human-
centric or user-centric. From this perspective, the impact of a project
has been measured, in the past, by the number of users [54]. From
the same perspective, frequent use that is central to the users’ work is
desirable.

In the activity-centered approach, however, the user activities take
precedence: a project commissioned by the two researchers who will
find a cure for Alzheimer’s Disease is just as important as a social
media project with thousands of users—because the activity and goals
in the first project are so important. Similarly, in the activity-centered
approach, the value of a visualization tool to the users may not relate
to its frequency of use: an important, yearly activity which lasts for
days and leaves participants dreading the next year’s activity can also
serve as a strong project motivator [12]. Overall, potential impact in
the activity-centered model weighs in both activities and humans.

3.2.2 Tasks

Why: The Tasks component is the core of the model, and, along with
the Flow, implements most closely the activity-centered aspect of this
model. The purpose of the Tasks component is to reveal the user
activities, which are composed of such tasks. As part of this process,
the interviewer aims to steer the interviewees into using examples
rather than abstractions, and to reveal requirements that users may have
difficulty recalling outside of their work environment. Real or made
up examples capture both user tasks and the context in which the work
will be performed.
How: A first question used to jumpstart the Tasks conversation is: “Give
me the twenty most important questions you would like to ask from
your data visualization system” [50] or, alternatively, “What are twenty
example tasks that you would complete using this system?”. In the
design experience, twenty is about the right number: when asked for
two to five examples, users tend to resort to abstract goals, which are
inherently ill-defined: e.g., “Identify the link between gene mutations
and molecular function” [29], or “Identify regions of error in turbulent
flow” [32]. In contrast, requiring a higher number of examples has
the effect of steering the users into more precise task formulations.
These precise task formulations anchor the requirements in the target
domain, and also reveal the actual data: “Locate an ortholog cluster in
the 673 genomes”, “Examine the 8-gene neighborhood of the ortholog
cluster” [2] etc. Because most users can spontaneously provide at most
seven or eight example tasks, it is important that the agenda notification
specifically ask for the twenty examples in advance (Sec. 3.1). A one
week advance notification provides the experts with time to reflect
on their needs, observe their workflow, and then expand, refine and
organize their set of example tasks.

If a task description is too abstract or high-level, the interviewer
asks “How would you go about doing that?”, establishing a back and
forth with the Flow component of the model, as appropriate. Users
typically address the normal, most typical tasks first, in which no errors
or variations occur. If not, some gentle steering may be required. Once
a task list of reasonable length is compiled, the users are prompted
to prioritize these tasks, in the order of importance and significance
to their work. This prioritization can be later used when planning
prototypes, as well as during evaluation.

As the users generate the list of tasks and the designers record it,
the designers also generate a separate list of data entities which were
mentioned in the tasks. Compiling the data list at this point helps steer
the conversation into the Data component. Users may also describe
simulated uses of the system by recalling or imagining stories, episodes,
or scenarios that they have experienced. These stories and scenarios
feed the Flow component.
Output: The output of this component is a prioritized list of tasks, as
well as a preliminary list of data entities, and, potentially, a preliminary
list of workflows and scenarios. The tasks may have been preliminary
abstracted into visualization terms, with great care towards clarifying

terminology and establishing a common vocabulary.
Model Perspective: The Tasks component reveals the user activities,
at the right granularity level. Unlike the general activity-centered
paradigm, in which focusing on tasks is considered too limiting [40],
in this model of domain characterization the tasks (as opposed to ac-
tivities) are used to reveal the underlying, precise requirements of
the application domain. Each user task is a stereotypical description,
written in text form, of the usage of the system to complete a task.
Granular tasks can later be grouped in activities and goals during the
requirements analysis step.

The Tasks component is a two-way process, in which designers
and users together may refine the tasks using visualization specific
vocabulary (“locate”, “search”, “compare” etc.) [7, 39, 43], as well as
clarify terms. The conversation can thus be used to check the validity of
preliminary abstractions and translations into visualization terminology.

Not all tasks associated with the domain problem can be explored
in a single meeting; the set of tasks is typically iteratively refined over
days and weeks. However, the prioritized set of tasks identified in this
section can serve to guide the initial abstraction and encoding stages of
design.

3.2.3 Data
Why: The Data component of the model is tightly linked to the Tasks
component, and is explicitly included in this model because of its im-
portance to visualization taxonomies. Visualization taxonomies, in
turn, play an important role in the abstraction and encoding stages of
visualization design. Last but not least, data influence the nonfunc-
tional requirements of the activity-centered model, in the form of data
constraints which affect the visualization solution.
How: During this section, the designer revisits the list of data entities
compiled during the Tasks description, and attempts to clarify for each
entity: 1) the nature of the entity—e.g., spatial (featuring intrinsic
spatial coordinates) or nonspatial; 2) the entity type and attributes; 3)
the size and amounts, and the streaming rates for streaming data; 4)
the data source and potential sources of data error, and 5) the data
format. Documenting counts, sizes, streaming rates, and validity of
the data is, in particular, a crucial part of the process that is often
overlooked. The interviewer also checks the number of data instances
involved in a particular task—one, some, many, all; doing so further
clarifies the translation of tasks into visualization taxonomies [39].
The conversation can also be used to check the validity of potential
abstractions (for example, the validity of representing the data as a
graph structure), while taking care to also clarify the meaning of those
visualization terms that are unfamiliar to the users.
Output: The result of this component is a refined list of data entities,
along with the characteristics of each data entity. The data may be
already abstracted into a visualization taxonomy.
Model Perspective: Data is central to the visualization field, where it
guides the taxonomy of visual representations. In the activity-centered
model, data is nevertheless secondary to the user tasks. In the activity-
centered approach, the inquiry does not start with a discussion of data
instead of a discussion of tasks: the data inquiry follows the task
discussion.

3.2.4 Flow
Why: The Flow component is an explicit request for existing workflows,
or ideal workflows (how would the users go about solving a practical
problem, ideally?), using the Tasks and Data previously identified.
The Flow component often reveals the sequence of tasks, as well as
the manner in which small tasks are sometimes combined in larger
activities. Because user workflows go beyond task sequencing, the Flow
component further provides an opportunity to identify: 1) cycles and
frequency of tasks; 2) the data sources, and 3) the humans involved at
each workflow step. In practice, the Flow component is an opportunity
for reflection, which often reveals that the users skipped an essential
preparatory, intermediate, or analysis step in their previous Tasks list,
or an additional data entity.
How: The interviewer prompts the user for example workflows and
scenarios that involve the previously identified tasks and data. Domain

experts may not engage in the topics of task frequency, data sources, and
humans without guidance; it is the designer’s task to make sure these
topics are discussed. As part of this process, the designer explicitly
maps the Humans, Tasks and Data information to the activity Flow.

Data sample elicitation. As part of the Flow component, the de-
signers mandatorily request at this point access to the data, or a data
sample of sufficient size and complexity—to ensure that real data exists,
it is accessible, and it is available for visualization.

Ethnographic observation request. If appropriate, the designers
may also request and schedule at this point a follow-up observation
session. The request is particularly important when the users’ work
environment plays an important role in a workflow, or when it is plau-
sible, despite the notification period of self-observation, that what the
users say they do is not necessarily what they do in practice [13, 42].
Output: The result of this section is a set of user-specified workflows
and scenarios. The interviewer needs to make sure that each previously
identified task is associated with at least one flow or scenario. A
secondary result is a set of updates to the Task and Data lists previously
determined.
Model Perspective: Overall, the workflows and scenarios revealed
through this component can provide a basis for designing prototypes,
and for developing case studies for evaluation. The Flow component
lays thus the grounds for the abstraction and encoding stages of design,
and also can guide their evaluation.

In the activity-centered model, it is important that the Tasks and Data
discussion precedes the Flow: compiling a list of tasks first ensures the
workflows are described at the right granularity. Furthermore, in view
of future evaluation, each task should be associated with at least one
workflow or scenario.

This model instantiation also explicitly highlights two important
aspects of visualization design: the source of data featured in the user
activities, and the environment in which the activities take place. The
benefits of incorporating real and interesting data into visualization
prototypes, as well as the pitfalls of not using real data have been
well documented in the literature [27, 44]. As shown in the literature,
designers ignore the data access request and followup step at their own
peril.

3.3 Establishing the Problem Context

The third chronological stage of the model, also instantiated here for
visualization design, covers the problem context. The context of the
problem is not the same as the “context of use” referenced in human-
centered design [27]. In this domain characterization model, the context
follows the activity-centered paradigm and has two components: 1)
nonfunctional requirements, which describe the user expectations re-
garding the operational environment of the project; and 2) a set of
three-pronged probes to test the validity of engaging in the project, as
well as the potential impact of the project.

3.3.1 Nonfunctional Requirements

Why: Unlike functional requirements, which describe the functioning
of the product, and which can be captured via scenarios, nonfunctional
requirements capture the user’s perception of the “being” of the product.
Nonfunctional requirements are as important as functional requirements
to the success of a project. Such requirements go beyond usability and
user experience goals: 1) Scalability influences more than just visual
scalability (would we be able to store and process on the fly a petascale
dataset? [28, 33]); 2) Privacy can affect the publication of a project—
several interdisciplinary projects nearly-failed publication because data
was revealed to be private, sensitive, or proprietary [23, 51]; 3) Certain
scientific user groups have a strong preference for desktop applications
(as opposed to web-based) [58], and other groups expect cross-platform
compatibility [46]. All the factors above influence the design and
outcome of a project.
How: The questions asked in this component are informed by the
earlier-covered topics of Humans, Data, Tasks and Flow. The mini-
mum of issues to be clarified in this section of the discussion—because
of the impact they can have on the project design—typically need to

include: scalability, privacy, accessibility, operating environment, pre-
ferred tools, and learnability. The questions can be organized along
the HCI typology of nonfunctional requirements [42], which includes:
1) environmental requirements related to the social, technical, or organi-
zational environment of the product, including computing requirements
and run-times; 2) data-related requirements regarding the volatility of
data, its values, size/amount, persistence, accuracy etc.; 3) the user char-
acteristics; 4) usability goals such as learnability; and 5) user experience
goals such as enjoyment.
Output: The result of this section is an itemized list of nonfunctional
requirements, organized according to their type.
Model Perspective: Nonfunctional requirements affect the user activ-
ities and the overall project, although they are in general not directly
captured by tasks, workflows, and scenarios. Because nonfunctional
requirements are not explicitly covered by activities and scenarios, spe-
cial care must be taken that these requirements are clarified during the
requirements session. Nonfunctional requirements need to be explicitly
captured in the requirements documentation, and later discussed in the
project evaluation plans.

3.3.2 Probes

Why: The context probes capture, from an activity perspective, the
validity of engaging in the project, as well as its potential impact.
How: This work groups the probes into three categories: rationale of
visualization being necessary to solve the domain problem; critique of
existing tools; and exploration of possibilities.

Visualization argumentation. The goal of this set of probes is to
clarify whether visualization is appropriate for solving the domain prob-
lem. In particular, the users and designers brainstorm about whether
the activities and tasks could be addressed algorithmically, or through
straight data integration.

Critique of existing tools. The second set of probes discusses
the benefits and shortcomings of existing approaches to the problem.
The probes also seek to establish whether the interviewees are aware
of existing tools. In the design experience, most scientific users are
well versed in visualization toolkits, and quite articulate and vocal
in their likes and dislikes [32]. However, an existing visual tool or
representation may still turn out to be the right solution.

Possibilities exploration. The third and last set of probes is the
most open-ended one, and seeks to explore other desirable features
that the user did not previously consider. Examples include journaling,
integrating additional data, a new interaction paradigm or technology
etc. For example, the users may not have realized that pairwise vi-
sual comparison could simplify their workflow [34]; if the comparison
option is not explored at this point, the project may require later sig-
nificant redesign. Note, however, that in order to preserve trust in the
collaboration, the open-ended features do not take precedence over the
user-specified requirements.
Output: The result is a crisp rationale for the visualization approach,
in the context of existing tools. A secondary result is a set of updates to
the Tasks, Data, and Flow lists.
Model Perspective: The probes describe a side of the overall context
of user activities that is complementary to nonfunctional requirements.
Like nonfunctional requirements, these aspects do not feature explic-
itly in the user activities and scenarios, and they must be explicitly
accounted for in the requirements documentation.

The probes signal the end of the interactive requirements session.
In closing, the interviewer thanks the participants, describes the next
steps, reiterates the request for data access and potential observation
session, and asks for permission to ask follow up questions. It also
helps to agree on a single point of contact on both the domain side and
the designer side, to help avoid potential communication breakdowns.

3.4 Analysis, Specification, Validation

The essential last stage of the activity-centered model is the analysis
of requirements, specification, and validation of the designer’s under-
standing of the problem. This step can take days to weeks to complete,
and includes the activity-centered concept of functional specifications.

MARAI: ACTIVITY-CENTERED DOMAIN CHARACTERIZATION FOR PROBLEM-DRIVEN SCIENTIFIC VISUALIZATION 917

Output: The result of this component is an itemized list of project and
user characteristics: how many users there are, what type of background
they have, who will be performing the activities, how often, for how
long, and in what setting.
Model Perspective: The visualization methodology is often human-
centric or user-centric. From this perspective, the impact of a project
has been measured, in the past, by the number of users [54]. From
the same perspective, frequent use that is central to the users’ work is
desirable.

In the activity-centered approach, however, the user activities take
precedence: a project commissioned by the two researchers who will
find a cure for Alzheimer’s Disease is just as important as a social
media project with thousands of users—because the activity and goals
in the first project are so important. Similarly, in the activity-centered
approach, the value of a visualization tool to the users may not relate
to its frequency of use: an important, yearly activity which lasts for
days and leaves participants dreading the next year’s activity can also
serve as a strong project motivator [12]. Overall, potential impact in
the activity-centered model weighs in both activities and humans.

3.2.2 Tasks

Why: The Tasks component is the core of the model, and, along with
the Flow, implements most closely the activity-centered aspect of this
model. The purpose of the Tasks component is to reveal the user
activities, which are composed of such tasks. As part of this process,
the interviewer aims to steer the interviewees into using examples
rather than abstractions, and to reveal requirements that users may have
difficulty recalling outside of their work environment. Real or made
up examples capture both user tasks and the context in which the work
will be performed.
How: A first question used to jumpstart the Tasks conversation is: “Give
me the twenty most important questions you would like to ask from
your data visualization system” [50] or, alternatively, “What are twenty
example tasks that you would complete using this system?”. In the
design experience, twenty is about the right number: when asked for
two to five examples, users tend to resort to abstract goals, which are
inherently ill-defined: e.g., “Identify the link between gene mutations
and molecular function” [29], or “Identify regions of error in turbulent
flow” [32]. In contrast, requiring a higher number of examples has
the effect of steering the users into more precise task formulations.
These precise task formulations anchor the requirements in the target
domain, and also reveal the actual data: “Locate an ortholog cluster in
the 673 genomes”, “Examine the 8-gene neighborhood of the ortholog
cluster” [2] etc. Because most users can spontaneously provide at most
seven or eight example tasks, it is important that the agenda notification
specifically ask for the twenty examples in advance (Sec. 3.1). A one
week advance notification provides the experts with time to reflect
on their needs, observe their workflow, and then expand, refine and
organize their set of example tasks.

If a task description is too abstract or high-level, the interviewer
asks “How would you go about doing that?”, establishing a back and
forth with the Flow component of the model, as appropriate. Users
typically address the normal, most typical tasks first, in which no errors
or variations occur. If not, some gentle steering may be required. Once
a task list of reasonable length is compiled, the users are prompted
to prioritize these tasks, in the order of importance and significance
to their work. This prioritization can be later used when planning
prototypes, as well as during evaluation.

As the users generate the list of tasks and the designers record it,
the designers also generate a separate list of data entities which were
mentioned in the tasks. Compiling the data list at this point helps steer
the conversation into the Data component. Users may also describe
simulated uses of the system by recalling or imagining stories, episodes,
or scenarios that they have experienced. These stories and scenarios
feed the Flow component.
Output: The output of this component is a prioritized list of tasks, as
well as a preliminary list of data entities, and, potentially, a preliminary
list of workflows and scenarios. The tasks may have been preliminary
abstracted into visualization terms, with great care towards clarifying

terminology and establishing a common vocabulary.
Model Perspective: The Tasks component reveals the user activities,
at the right granularity level. Unlike the general activity-centered
paradigm, in which focusing on tasks is considered too limiting [40],
in this model of domain characterization the tasks (as opposed to ac-
tivities) are used to reveal the underlying, precise requirements of
the application domain. Each user task is a stereotypical description,
written in text form, of the usage of the system to complete a task.
Granular tasks can later be grouped in activities and goals during the
requirements analysis step.

The Tasks component is a two-way process, in which designers
and users together may refine the tasks using visualization specific
vocabulary (“locate”, “search”, “compare” etc.) [7, 39, 43], as well as
clarify terms. The conversation can thus be used to check the validity of
preliminary abstractions and translations into visualization terminology.

Not all tasks associated with the domain problem can be explored
in a single meeting; the set of tasks is typically iteratively refined over
days and weeks. However, the prioritized set of tasks identified in this
section can serve to guide the initial abstraction and encoding stages of
design.

3.2.3 Data
Why: The Data component of the model is tightly linked to the Tasks
component, and is explicitly included in this model because of its im-
portance to visualization taxonomies. Visualization taxonomies, in
turn, play an important role in the abstraction and encoding stages of
visualization design. Last but not least, data influence the nonfunc-
tional requirements of the activity-centered model, in the form of data
constraints which affect the visualization solution.
How: During this section, the designer revisits the list of data entities
compiled during the Tasks description, and attempts to clarify for each
entity: 1) the nature of the entity—e.g., spatial (featuring intrinsic
spatial coordinates) or nonspatial; 2) the entity type and attributes; 3)
the size and amounts, and the streaming rates for streaming data; 4)
the data source and potential sources of data error, and 5) the data
format. Documenting counts, sizes, streaming rates, and validity of
the data is, in particular, a crucial part of the process that is often
overlooked. The interviewer also checks the number of data instances
involved in a particular task—one, some, many, all; doing so further
clarifies the translation of tasks into visualization taxonomies [39].
The conversation can also be used to check the validity of potential
abstractions (for example, the validity of representing the data as a
graph structure), while taking care to also clarify the meaning of those
visualization terms that are unfamiliar to the users.
Output: The result of this component is a refined list of data entities,
along with the characteristics of each data entity. The data may be
already abstracted into a visualization taxonomy.
Model Perspective: Data is central to the visualization field, where it
guides the taxonomy of visual representations. In the activity-centered
model, data is nevertheless secondary to the user tasks. In the activity-
centered approach, the inquiry does not start with a discussion of data
instead of a discussion of tasks: the data inquiry follows the task
discussion.

3.2.4 Flow
Why: The Flow component is an explicit request for existing workflows,
or ideal workflows (how would the users go about solving a practical
problem, ideally?), using the Tasks and Data previously identified.
The Flow component often reveals the sequence of tasks, as well as
the manner in which small tasks are sometimes combined in larger
activities. Because user workflows go beyond task sequencing, the Flow
component further provides an opportunity to identify: 1) cycles and
frequency of tasks; 2) the data sources, and 3) the humans involved at
each workflow step. In practice, the Flow component is an opportunity
for reflection, which often reveals that the users skipped an essential
preparatory, intermediate, or analysis step in their previous Tasks list,
or an additional data entity.
How: The interviewer prompts the user for example workflows and
scenarios that involve the previously identified tasks and data. Domain

experts may not engage in the topics of task frequency, data sources, and
humans without guidance; it is the designer’s task to make sure these
topics are discussed. As part of this process, the designer explicitly
maps the Humans, Tasks and Data information to the activity Flow.

Data sample elicitation. As part of the Flow component, the de-
signers mandatorily request at this point access to the data, or a data
sample of sufficient size and complexity—to ensure that real data exists,
it is accessible, and it is available for visualization.

Ethnographic observation request. If appropriate, the designers
may also request and schedule at this point a follow-up observation
session. The request is particularly important when the users’ work
environment plays an important role in a workflow, or when it is plau-
sible, despite the notification period of self-observation, that what the
users say they do is not necessarily what they do in practice [13, 42].
Output: The result of this section is a set of user-specified workflows
and scenarios. The interviewer needs to make sure that each previously
identified task is associated with at least one flow or scenario. A
secondary result is a set of updates to the Task and Data lists previously
determined.
Model Perspective: Overall, the workflows and scenarios revealed
through this component can provide a basis for designing prototypes,
and for developing case studies for evaluation. The Flow component
lays thus the grounds for the abstraction and encoding stages of design,
and also can guide their evaluation.

In the activity-centered model, it is important that the Tasks and Data
discussion precedes the Flow: compiling a list of tasks first ensures the
workflows are described at the right granularity. Furthermore, in view
of future evaluation, each task should be associated with at least one
workflow or scenario.

This model instantiation also explicitly highlights two important
aspects of visualization design: the source of data featured in the user
activities, and the environment in which the activities take place. The
benefits of incorporating real and interesting data into visualization
prototypes, as well as the pitfalls of not using real data have been
well documented in the literature [27, 44]. As shown in the literature,
designers ignore the data access request and followup step at their own
peril.

3.3 Establishing the Problem Context

The third chronological stage of the model, also instantiated here for
visualization design, covers the problem context. The context of the
problem is not the same as the “context of use” referenced in human-
centered design [27]. In this domain characterization model, the context
follows the activity-centered paradigm and has two components: 1)
nonfunctional requirements, which describe the user expectations re-
garding the operational environment of the project; and 2) a set of
three-pronged probes to test the validity of engaging in the project, as
well as the potential impact of the project.

3.3.1 Nonfunctional Requirements

Why: Unlike functional requirements, which describe the functioning
of the product, and which can be captured via scenarios, nonfunctional
requirements capture the user’s perception of the “being” of the product.
Nonfunctional requirements are as important as functional requirements
to the success of a project. Such requirements go beyond usability and
user experience goals: 1) Scalability influences more than just visual
scalability (would we be able to store and process on the fly a petascale
dataset? [28, 33]); 2) Privacy can affect the publication of a project—
several interdisciplinary projects nearly-failed publication because data
was revealed to be private, sensitive, or proprietary [23, 51]; 3) Certain
scientific user groups have a strong preference for desktop applications
(as opposed to web-based) [58], and other groups expect cross-platform
compatibility [46]. All the factors above influence the design and
outcome of a project.
How: The questions asked in this component are informed by the
earlier-covered topics of Humans, Data, Tasks and Flow. The mini-
mum of issues to be clarified in this section of the discussion—because
of the impact they can have on the project design—typically need to

include: scalability, privacy, accessibility, operating environment, pre-
ferred tools, and learnability. The questions can be organized along
the HCI typology of nonfunctional requirements [42], which includes:
1) environmental requirements related to the social, technical, or organi-
zational environment of the product, including computing requirements
and run-times; 2) data-related requirements regarding the volatility of
data, its values, size/amount, persistence, accuracy etc.; 3) the user char-
acteristics; 4) usability goals such as learnability; and 5) user experience
goals such as enjoyment.
Output: The result of this section is an itemized list of nonfunctional
requirements, organized according to their type.
Model Perspective: Nonfunctional requirements affect the user activ-
ities and the overall project, although they are in general not directly
captured by tasks, workflows, and scenarios. Because nonfunctional
requirements are not explicitly covered by activities and scenarios, spe-
cial care must be taken that these requirements are clarified during the
requirements session. Nonfunctional requirements need to be explicitly
captured in the requirements documentation, and later discussed in the
project evaluation plans.

3.3.2 Probes

Why: The context probes capture, from an activity perspective, the
validity of engaging in the project, as well as its potential impact.
How: This work groups the probes into three categories: rationale of
visualization being necessary to solve the domain problem; critique of
existing tools; and exploration of possibilities.

Visualization argumentation. The goal of this set of probes is to
clarify whether visualization is appropriate for solving the domain prob-
lem. In particular, the users and designers brainstorm about whether
the activities and tasks could be addressed algorithmically, or through
straight data integration.

Critique of existing tools. The second set of probes discusses
the benefits and shortcomings of existing approaches to the problem.
The probes also seek to establish whether the interviewees are aware
of existing tools. In the design experience, most scientific users are
well versed in visualization toolkits, and quite articulate and vocal
in their likes and dislikes [32]. However, an existing visual tool or
representation may still turn out to be the right solution.

Possibilities exploration. The third and last set of probes is the
most open-ended one, and seeks to explore other desirable features
that the user did not previously consider. Examples include journaling,
integrating additional data, a new interaction paradigm or technology
etc. For example, the users may not have realized that pairwise vi-
sual comparison could simplify their workflow [34]; if the comparison
option is not explored at this point, the project may require later sig-
nificant redesign. Note, however, that in order to preserve trust in the
collaboration, the open-ended features do not take precedence over the
user-specified requirements.
Output: The result is a crisp rationale for the visualization approach,
in the context of existing tools. A secondary result is a set of updates to
the Tasks, Data, and Flow lists.
Model Perspective: The probes describe a side of the overall context
of user activities that is complementary to nonfunctional requirements.
Like nonfunctional requirements, these aspects do not feature explic-
itly in the user activities and scenarios, and they must be explicitly
accounted for in the requirements documentation.

The probes signal the end of the interactive requirements session.
In closing, the interviewer thanks the participants, describes the next
steps, reiterates the request for data access and potential observation
session, and asks for permission to ask follow up questions. It also
helps to agree on a single point of contact on both the domain side and
the designer side, to help avoid potential communication breakdowns.

3.4 Analysis, Specification, Validation

The essential last stage of the activity-centered model is the analysis
of requirements, specification, and validation of the designer’s under-
standing of the problem. This step can take days to weeks to complete,
and includes the activity-centered concept of functional specifications.

918 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 1, JANUARY 2018

3.4.1 Analysis
Why: While the domain characterization defined so far is grounded
in the application domain, proceeding at this point directly towards
ideation and prototyping is a costly mistake. The problem stems from
the fact that the information flow so far has been almost exclusively
from the domain expert towards the designer. There is no guarantee, so
far, that the designer’s understanding of the domain problem and user
activities is either accurate or complete. Analysis, followed by specs, is
a first step towards validating this understanding.
How: Interviews generate large amounts of information. While the
information is still “fresh” in mind, designers analyze the information
in their notes to uncover patterns and conflicts, and contact the users for
clarifications. Conflicting nonfunctional requirements may be weighed
against each other and reprioritized. Similar tasks and their workflows
are then grouped into logical sets of functional requirements.

The Flow information may help the designer group similar work-
flows or subflows into scenarios and use cases. In this respect, Spring-
meyer et al. [48] show an example characterization of the scientific
data analysis process in terms of functional requirements. Their work
describes the process of extracting an operation taxonomy which is
grounded in interviewing and observation. Variations on grouping tech-
niques like Hierarchical Task Analysis [49] and Card Sorting [31] can
also be useful at this stage.
Output: The result of analysis is a non-conflicting description of the
project requirements, as well as a hierarchical organization of the user
activities and tasks.
Model Perspective: The activity model explicitly partitions require-
ments into activity-related capabilities (functional requirements), and
nonfunctional requirements. The analysis step groups the previously
determined granular tasks and workflows into activities and goals, and
weighs in the nonfunctional requirements. The original set of prioritized
tasks is reflected in the resulting description.

3.4.2 Functional Specifications
Why: Functional specifications reflect the process of organizing into
documentation the requirements analyzed above, from the user’s point
of view. In this respect, a functional specification describes how a
product will work, entirely from the user’s perspective. A functional
specification describes features, and it does not concern itself with how
the product is implemented. Functional specifications allow the users
to validate the designers’ understanding of the domain problem.
How: The requirements captured and analyzed so far are translated
into a written functional specification document, often in the form of
a collection of scenarios. The specification also documents the data
attributes that each scenario must access.

A functional specification spells out the activity-related design goals,
as the designer understands them from the established requirements.
A specification also specifies nongoals, or what—from the established
requirements—the designed product will not do. A specification docu-
ment further includes a prioritized list of nonfunctional requirements.
The functional specifications also include scenarios, as discussed in the
Validation section below.
Output: The result is a specification document, which describes the
designer’s understanding of the user activities. Like requirements,
specifications evolve over time, in an iterative process. Spolsky [47]
provides a complete example of a functional specification, and this
work includes a sample functional specification in the supplemental
materials. Functional specifications are evolving documents, which get
updated after each interview and as the project evolves.
Model Perspective: Specifications and requirements are two separate
concepts. Requirements can be established through interviewing and
observation of the users. In contrast, specifications reflect the designer’s
understanding of the user requirements, and are the result of a reason-
ably lengthy requirements analysis process. Specifications take the
form of a written document, which is the result of thoughtful analysis
off line, and which the users can review in a process that is in no way
an interview or an observation. In a nutshell, requirements come from
the user towards the designer, while functional specifications go in the
opposite direction, from the designer towards the user (Fig. 2).

Fig. 2. Activity-Centered view of the HCD cycle (observation, ideation,
prototyping, testing [40]). In HCD, users can confirm that the designer is
solving the right problem after at least one full cycle iteration. The ACD
functional specs are a backwards shortcut through the HCD loop, before
the prototyping stage, that allows the user to confirm sooner the validity
of the designer’s problem characterization.

Specifications as a risk mitigation factor. Arguably, writing spec-
ifications constitutes the biggest risk mitigation factor available to
visualization designers. Functional specifications can effectively ensure
that the designers are not solving the wrong problem, as well as help the
designers avoid situations where the way the data is shown does not fit
correctly the user workflow—before the prototyping stage. In fact, in
the absence of the activity paradigm and functional specs, prototyping
is an early estimate: an operational prototype which can be tested (i.e.,
completing a full cycle through the human centered design loop) is
typically necessary to answer such questions.

In the larger framework of software engineering, functional specs are
ranked among the twelve steps essential to any product development
process, right next to using source control [47]. Functional specs permit
a rigorous assessment of requirements before design can begin, and
reduce later redesign [6]. Designers can also use the specifications doc-
ument as the basis for developing effective verification and validation
plans. Similarly, functional specifications should be an essential com-
ponent of problem-driven visualization design. In the activity-centered
model, functional specifications capture the user activities determined
during the requirements session, in the form of designer-written scenar-
ios. Asking the user to review these scenarios is a unique opportunity
to verify that the visualization designers are not solving the wrong
problem.

3.4.3 Validation

Why: Specification validation ensures that the project is sufficiently
specified to meet user needs, before ideation and prototyping com-
mence. Validation further detects and corrects any unnecessary and
incorrect requirements, and ensures that designers’ understanding is
consistent with the user needs.
How: Validation can be performed via peer review—a focused meeting
in which a small number of stakeholders evaluates the requirements and
specifications documentation to find errors and improve quality. Other
validation approaches, such as acceptance tests, model walk-throughs,
and operational prototypes are also possible (unlike exploratory proto-
types, which clarify ambiguous requirements, operational prototypes
typically implement functionality) [15].

As a rule of thumb, one can only inspect two to five pages of docu-
mentation in a few hours [15], which is part of the reason why inter-
viewing and observation [21, 45] are not a good fit with specification
validation. In the validation made possible by functional specifications,
each inspector (including the author) prepares for the peer review by
spending one to two hours examining the specifications. This is a
critical part of the process; in software engineering, most of the er-
rors are detected during individual preparation [15]. The functional
specifications are then revised based on the user feedback.
Output: The result is a validated set of requirements and functional

specifications which characterize the domain problem.
Model Perspective: In theory, functional specifications should be easy
to write and validate, in particular if the requirements collected earlier
follow the activity-centered approach, and as such, are already de-
scribed as scenarios. In practice, however, asking the users to validate
specifications written in a formal format has a single, uniform effect [6]:
users don’t read the specifications.

To mitigate the risk of users not reading the specifications, this
work recommends following the Spolsky advice for writing specifi-
cations: use interesting storytelling and entertaining language, while
scrupulously preserving technical content. In this approach, a standard
scenario starting with:

The user selects a biochemical model from the literature, and adds
it as a new model entry with a single field “Model Name” into the
visualization analysis system. The system is web-based.
becomes

Kermit the Frog, bored out of his mind, opens the latest issue of
Nature Methods and spots a mouth-watering model of the fruit-fly
response to allergens. Sticking his tongue out, Kermit runs to the
browser, opens the visualization system, and types a new model entry
with a single field called “Fruit-fly model”.

The supplemental materials for this paper provide a full example
of translating, for validation purposes, a few example use cases (re-
sulting from the analysis of requirements for a biology visualization
project [46]) into an example specification to be shared with the users.

From a practical standpoint, when following the approach above,
the user response rate increases from approximately 10% to 90%; the
user feedback also increases roughly by a factor of ten, not only in
quantity but also in quality. Simply put: users read, pay attention to,
and comment on entertaining specifications. In contrast, most users do
not read formal specifications.

3.5 Model Output and Summary

When completed correctly, the activity-centered model provides: 1) a
list of tasks and data entities; 2) a set of nonfunctional requirements; 3)
an answer to the three context probes; 4) a set of scenarios—in the form
of user-validated functional specifications—describing the activities
possible using the visualization tool or technique; 5) a sample dataset
of reasonable size and complexity.

The model is best described as a network, in that it is an intercon-
nected set of components. Stage 1 (Notification) is a prerequisite for
later stages; similarly, Stage 2 (Activity Inquiry) is a prerequisite for
Stages 3 and 4, and Stage 4 (Analysis, Specification, and Validation)
draws on the previous three stages. Stage 4 cannot be skipped. At the
same time, the components within each stage depend on each other and
feed each other.

Critical components (Tasks, Flow, Probes, Data Access etc.) can act
as gates in this model, and are sufficient reason to abort or postpone the
prototyping of a project. The Observation component, on the other hand,
is begrudgingly optional: while user and task analysis methods are best
carried out in the context of real work [52], it is not always possible to
observe the users in their environment—for example, in highly secure or
remote locations. In certain situations, unobtrusive contextual inquiry
may also not be particularly helpful—for example, when the domain
science requires years of training, laboratory experimental equipment,
or proprietary packages.

The resulting set of tasks and data entities could potentially be, at the
completion of the process, already abstracted into visualization terms.
While it is advisable to explain and check with the users the validity-
in-context of visual abstractions during the requirements session, this
may not always be possible. In practice, certain abstractions keep
getting refined through repeated iterations and the writing of the final
report [44].

The preliminary set of validated requirements and functional speci-
fications engineered through this model is now ready to be passed on,
along with sample data, to the next visualization design stage. This
concludes the description of the activity-centered model for domain
characterization.

4 EVALUATION

According to Karl Popper, a theory in the empirical sciences can never
be proven, although it can be falsified [17]. With this observation in
mind, in the visualization literature, a model or theory can be acceptably
supported by as little as one to a few concrete examples coming from
the experience of one to a few authors [27,38,41,44]. The present work
takes supporting evidence a step further, by considering the impact
of the activity-centered model on the success of 35 concrete short-
term projects completed by young researchers, and by contrasting the
findings against results on 40 short-term projects similarly completed,
but under prior models. The evaluation is rounded by considering
further evidence from reports in the literature.

4.1 Supporting Evidence
The two sets of projects considered here have been completed by young
visualization researchers undergoing training in interdisciplinary visu-
alization research. Arguably, these young researchers would be the
first to benefit from a blueprint of the domain characterization process.
Each visualization project required collaboration with domain experts
from a variety of domains, from orthopedics to turbulent combustion
(e.g. [1, 18, 30, 33, 34, 51, 61]), and was, in its first iteration, completed
in under 3 months. For each of these projects (several of which have
resulted in publications), this work considers success in terms of both
novelty (defined as potential for publication) and, along Brooks’s crite-
ria [8], the domain experts’ expressed interest in adopting the research
result as a tool.

The first set of 40 of these projects operated under a generic agile
software engineering process model, enhanced by the information
visualization nested model [38] and pitfalls model [44]. Note that due
to lengthy data learning, cleaning and preprocessing characteristic to
scientific visualization, the agile process sometimes decayed into one
iteration of the standard HCD loop. From these 40 projects, 10 had
a successful outcome, or a 25% success rate. From the 10 successful
projects, 2 were completed by dual-expertise researchers (with a degree
in the problem domain). The remaining 8 benefited from collaboration
with committed domain experts who agreed to weekly meetings with
the designers. The remaining projects failed under a variety of factors,
including data issues and miscommunication issues, despite several
committed collaborators. The 25% success rate is significantly lower
than the one reported for agile processes in software engineering [19].

The second set of 35 projects operated under the same agile process,
enhanced by the nested model and by the Activity-Centered model
described in this work. From this set, 22 projects had a successful
outcome, or a 63% success rate. From these successful projects, 2
were completed by dual-expertise researchers, and 10 benefited from
weekly meetings with committed domain experts. 10 other projects
succeeded despite no weekly commitment from the experts. The 63%
success rate over this second set is slightly higher than the one reported
for agile processes in software engineering (58% for small projects)
[19]. From the remaining unsuccessful projects, 9 were failed projects
(due to: improperly executed Data Access component, skipped or
poorly executed Functional Specs component, respectively client never
reviewing the Specs), and 4 were partial failures (client success, but
no novelty due to improperly executed Probes component). Notably,
for each of the unsuccessful projects, their success could have been
predicted right from the domain characterization stage. Note also that
in both settings, a number of projects have failed despite committed
collaborators.

These results lend support to the activity-based model. To a large
extent, these results have helped motivate articulating the present work.

4.2 Fit with Existing Reports and Models
Agreement. Visualization models and reports [27, 41, 44, 46, 48, 52]
have previously noted, sometimes empirically, the benefits of including
a task axis in the domain problem analysis, and paying attention to the
user workflows.

In particular, Lloyd and Dykes [27] report how repeatedly drafting
a scenario from the user requirements, and having it evaluated by the
users, “showed this to be a fruitful exercise.” The activity-centered

MARAI: ACTIVITY-CENTERED DOMAIN CHARACTERIZATION FOR PROBLEM-DRIVEN SCIENTIFIC VISUALIZATION 919

3.4.1 Analysis
Why: While the domain characterization defined so far is grounded
in the application domain, proceeding at this point directly towards
ideation and prototyping is a costly mistake. The problem stems from
the fact that the information flow so far has been almost exclusively
from the domain expert towards the designer. There is no guarantee, so
far, that the designer’s understanding of the domain problem and user
activities is either accurate or complete. Analysis, followed by specs, is
a first step towards validating this understanding.
How: Interviews generate large amounts of information. While the
information is still “fresh” in mind, designers analyze the information
in their notes to uncover patterns and conflicts, and contact the users for
clarifications. Conflicting nonfunctional requirements may be weighed
against each other and reprioritized. Similar tasks and their workflows
are then grouped into logical sets of functional requirements.

The Flow information may help the designer group similar work-
flows or subflows into scenarios and use cases. In this respect, Spring-
meyer et al. [48] show an example characterization of the scientific
data analysis process in terms of functional requirements. Their work
describes the process of extracting an operation taxonomy which is
grounded in interviewing and observation. Variations on grouping tech-
niques like Hierarchical Task Analysis [49] and Card Sorting [31] can
also be useful at this stage.
Output: The result of analysis is a non-conflicting description of the
project requirements, as well as a hierarchical organization of the user
activities and tasks.
Model Perspective: The activity model explicitly partitions require-
ments into activity-related capabilities (functional requirements), and
nonfunctional requirements. The analysis step groups the previously
determined granular tasks and workflows into activities and goals, and
weighs in the nonfunctional requirements. The original set of prioritized
tasks is reflected in the resulting description.

3.4.2 Functional Specifications
Why: Functional specifications reflect the process of organizing into
documentation the requirements analyzed above, from the user’s point
of view. In this respect, a functional specification describes how a
product will work, entirely from the user’s perspective. A functional
specification describes features, and it does not concern itself with how
the product is implemented. Functional specifications allow the users
to validate the designers’ understanding of the domain problem.
How: The requirements captured and analyzed so far are translated
into a written functional specification document, often in the form of
a collection of scenarios. The specification also documents the data
attributes that each scenario must access.

A functional specification spells out the activity-related design goals,
as the designer understands them from the established requirements.
A specification also specifies nongoals, or what—from the established
requirements—the designed product will not do. A specification docu-
ment further includes a prioritized list of nonfunctional requirements.
The functional specifications also include scenarios, as discussed in the
Validation section below.
Output: The result is a specification document, which describes the
designer’s understanding of the user activities. Like requirements,
specifications evolve over time, in an iterative process. Spolsky [47]
provides a complete example of a functional specification, and this
work includes a sample functional specification in the supplemental
materials. Functional specifications are evolving documents, which get
updated after each interview and as the project evolves.
Model Perspective: Specifications and requirements are two separate
concepts. Requirements can be established through interviewing and
observation of the users. In contrast, specifications reflect the designer’s
understanding of the user requirements, and are the result of a reason-
ably lengthy requirements analysis process. Specifications take the
form of a written document, which is the result of thoughtful analysis
off line, and which the users can review in a process that is in no way
an interview or an observation. In a nutshell, requirements come from
the user towards the designer, while functional specifications go in the
opposite direction, from the designer towards the user (Fig. 2).

Fig. 2. Activity-Centered view of the HCD cycle (observation, ideation,
prototyping, testing [40]). In HCD, users can confirm that the designer is
solving the right problem after at least one full cycle iteration. The ACD
functional specs are a backwards shortcut through the HCD loop, before
the prototyping stage, that allows the user to confirm sooner the validity
of the designer’s problem characterization.

Specifications as a risk mitigation factor. Arguably, writing spec-
ifications constitutes the biggest risk mitigation factor available to
visualization designers. Functional specifications can effectively ensure
that the designers are not solving the wrong problem, as well as help the
designers avoid situations where the way the data is shown does not fit
correctly the user workflow—before the prototyping stage. In fact, in
the absence of the activity paradigm and functional specs, prototyping
is an early estimate: an operational prototype which can be tested (i.e.,
completing a full cycle through the human centered design loop) is
typically necessary to answer such questions.

In the larger framework of software engineering, functional specs are
ranked among the twelve steps essential to any product development
process, right next to using source control [47]. Functional specs permit
a rigorous assessment of requirements before design can begin, and
reduce later redesign [6]. Designers can also use the specifications doc-
ument as the basis for developing effective verification and validation
plans. Similarly, functional specifications should be an essential com-
ponent of problem-driven visualization design. In the activity-centered
model, functional specifications capture the user activities determined
during the requirements session, in the form of designer-written scenar-
ios. Asking the user to review these scenarios is a unique opportunity
to verify that the visualization designers are not solving the wrong
problem.

3.4.3 Validation

Why: Specification validation ensures that the project is sufficiently
specified to meet user needs, before ideation and prototyping com-
mence. Validation further detects and corrects any unnecessary and
incorrect requirements, and ensures that designers’ understanding is
consistent with the user needs.
How: Validation can be performed via peer review—a focused meeting
in which a small number of stakeholders evaluates the requirements and
specifications documentation to find errors and improve quality. Other
validation approaches, such as acceptance tests, model walk-throughs,
and operational prototypes are also possible (unlike exploratory proto-
types, which clarify ambiguous requirements, operational prototypes
typically implement functionality) [15].

As a rule of thumb, one can only inspect two to five pages of docu-
mentation in a few hours [15], which is part of the reason why inter-
viewing and observation [21, 45] are not a good fit with specification
validation. In the validation made possible by functional specifications,
each inspector (including the author) prepares for the peer review by
spending one to two hours examining the specifications. This is a
critical part of the process; in software engineering, most of the er-
rors are detected during individual preparation [15]. The functional
specifications are then revised based on the user feedback.
Output: The result is a validated set of requirements and functional

specifications which characterize the domain problem.
Model Perspective: In theory, functional specifications should be easy
to write and validate, in particular if the requirements collected earlier
follow the activity-centered approach, and as such, are already de-
scribed as scenarios. In practice, however, asking the users to validate
specifications written in a formal format has a single, uniform effect [6]:
users don’t read the specifications.

To mitigate the risk of users not reading the specifications, this
work recommends following the Spolsky advice for writing specifi-
cations: use interesting storytelling and entertaining language, while
scrupulously preserving technical content. In this approach, a standard
scenario starting with:

The user selects a biochemical model from the literature, and adds
it as a new model entry with a single field “Model Name” into the
visualization analysis system. The system is web-based.
becomes

Kermit the Frog, bored out of his mind, opens the latest issue of
Nature Methods and spots a mouth-watering model of the fruit-fly
response to allergens. Sticking his tongue out, Kermit runs to the
browser, opens the visualization system, and types a new model entry
with a single field called “Fruit-fly model”.

The supplemental materials for this paper provide a full example
of translating, for validation purposes, a few example use cases (re-
sulting from the analysis of requirements for a biology visualization
project [46]) into an example specification to be shared with the users.

From a practical standpoint, when following the approach above,
the user response rate increases from approximately 10% to 90%; the
user feedback also increases roughly by a factor of ten, not only in
quantity but also in quality. Simply put: users read, pay attention to,
and comment on entertaining specifications. In contrast, most users do
not read formal specifications.

3.5 Model Output and Summary

When completed correctly, the activity-centered model provides: 1) a
list of tasks and data entities; 2) a set of nonfunctional requirements; 3)
an answer to the three context probes; 4) a set of scenarios—in the form
of user-validated functional specifications—describing the activities
possible using the visualization tool or technique; 5) a sample dataset
of reasonable size and complexity.

The model is best described as a network, in that it is an intercon-
nected set of components. Stage 1 (Notification) is a prerequisite for
later stages; similarly, Stage 2 (Activity Inquiry) is a prerequisite for
Stages 3 and 4, and Stage 4 (Analysis, Specification, and Validation)
draws on the previous three stages. Stage 4 cannot be skipped. At the
same time, the components within each stage depend on each other and
feed each other.

Critical components (Tasks, Flow, Probes, Data Access etc.) can act
as gates in this model, and are sufficient reason to abort or postpone the
prototyping of a project. The Observation component, on the other hand,
is begrudgingly optional: while user and task analysis methods are best
carried out in the context of real work [52], it is not always possible to
observe the users in their environment—for example, in highly secure or
remote locations. In certain situations, unobtrusive contextual inquiry
may also not be particularly helpful—for example, when the domain
science requires years of training, laboratory experimental equipment,
or proprietary packages.

The resulting set of tasks and data entities could potentially be, at the
completion of the process, already abstracted into visualization terms.
While it is advisable to explain and check with the users the validity-
in-context of visual abstractions during the requirements session, this
may not always be possible. In practice, certain abstractions keep
getting refined through repeated iterations and the writing of the final
report [44].

The preliminary set of validated requirements and functional speci-
fications engineered through this model is now ready to be passed on,
along with sample data, to the next visualization design stage. This
concludes the description of the activity-centered model for domain
characterization.

4 EVALUATION

According to Karl Popper, a theory in the empirical sciences can never
be proven, although it can be falsified [17]. With this observation in
mind, in the visualization literature, a model or theory can be acceptably
supported by as little as one to a few concrete examples coming from
the experience of one to a few authors [27,38,41,44]. The present work
takes supporting evidence a step further, by considering the impact
of the activity-centered model on the success of 35 concrete short-
term projects completed by young researchers, and by contrasting the
findings against results on 40 short-term projects similarly completed,
but under prior models. The evaluation is rounded by considering
further evidence from reports in the literature.

4.1 Supporting Evidence
The two sets of projects considered here have been completed by young
visualization researchers undergoing training in interdisciplinary visu-
alization research. Arguably, these young researchers would be the
first to benefit from a blueprint of the domain characterization process.
Each visualization project required collaboration with domain experts
from a variety of domains, from orthopedics to turbulent combustion
(e.g. [1, 18, 30, 33, 34, 51, 61]), and was, in its first iteration, completed
in under 3 months. For each of these projects (several of which have
resulted in publications), this work considers success in terms of both
novelty (defined as potential for publication) and, along Brooks’s crite-
ria [8], the domain experts’ expressed interest in adopting the research
result as a tool.

The first set of 40 of these projects operated under a generic agile
software engineering process model, enhanced by the information
visualization nested model [38] and pitfalls model [44]. Note that due
to lengthy data learning, cleaning and preprocessing characteristic to
scientific visualization, the agile process sometimes decayed into one
iteration of the standard HCD loop. From these 40 projects, 10 had
a successful outcome, or a 25% success rate. From the 10 successful
projects, 2 were completed by dual-expertise researchers (with a degree
in the problem domain). The remaining 8 benefited from collaboration
with committed domain experts who agreed to weekly meetings with
the designers. The remaining projects failed under a variety of factors,
including data issues and miscommunication issues, despite several
committed collaborators. The 25% success rate is significantly lower
than the one reported for agile processes in software engineering [19].

The second set of 35 projects operated under the same agile process,
enhanced by the nested model and by the Activity-Centered model
described in this work. From this set, 22 projects had a successful
outcome, or a 63% success rate. From these successful projects, 2
were completed by dual-expertise researchers, and 10 benefited from
weekly meetings with committed domain experts. 10 other projects
succeeded despite no weekly commitment from the experts. The 63%
success rate over this second set is slightly higher than the one reported
for agile processes in software engineering (58% for small projects)
[19]. From the remaining unsuccessful projects, 9 were failed projects
(due to: improperly executed Data Access component, skipped or
poorly executed Functional Specs component, respectively client never
reviewing the Specs), and 4 were partial failures (client success, but
no novelty due to improperly executed Probes component). Notably,
for each of the unsuccessful projects, their success could have been
predicted right from the domain characterization stage. Note also that
in both settings, a number of projects have failed despite committed
collaborators.

These results lend support to the activity-based model. To a large
extent, these results have helped motivate articulating the present work.

4.2 Fit with Existing Reports and Models
Agreement. Visualization models and reports [27, 41, 44, 46, 48, 52]
have previously noted, sometimes empirically, the benefits of including
a task axis in the domain problem analysis, and paying attention to the
user workflows.

In particular, Lloyd and Dykes [27] report how repeatedly drafting
a scenario from the user requirements, and having it evaluated by the
users, “showed this to be a fruitful exercise.” The activity-centered

920 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 1, JANUARY 2018

Fig. 3. Expanded Domain Characterization stage in the nested model.
The updated stage model features a third validation scheme: validate:
write and evaluate functional specifications. The nested stages of char-
acterization and abstraction also cross over.

model offers an interpretation of why the scenario worked well in
practice: in this case, although “too broadly-scoped”, the scenario
reflected the designers’ understanding of the user activity. Furthermore,
since the scenario was sent to the users for evaluation, it played the role
of a partial functional specification, in its activity-centered meaning.
Significantly, the report states that the users were able to make a total
of over 300 suggestions after reading the scenario—a testament to
the practical value of functional specs. The activity-centered model
offers a theoretical framework for this reported case, and a roadmap
for employing functional specifications systematically in the design
process.

Aspects of the activity model are also reflected in the pitfalls
model [44], although the latter does not necessarily provide actionable
guidance on how to avoid those pitfalls. From a practical standpoint,
the activity model combines well with their nine-level framework, and
can be used to prevent pitfalls PF-4 (“no data”), PF-6, 7, and 8 (“not
a visualization problem”), PF-9 (“existing tools”), and PF-10 (“users
and tasks”). Alternatively, the activity-centered model could be used
to analyze the first stages of the nine-level framework, as well as other
different process approaches to domain characterization.

Certain aspects of the activity-centered model have also been cap-
tured elsewhere: for example, certain types of nonfunctional require-
ments and probes have been preliminarily considered by McKenna et
al. [37], in the form of constraints, considerations, and opportunities.
The activity-centered model offers a unified framework for the con-
sistent and systematic treatment of these loose aspects of the domain
characterization process.

The results reported here also support similar findings in the field
regarding the role of active collaborators [22]. Furthermore, these
collaborators may indeed have different roles, expertise and knowl-
edge that apply during the analysis process [59], and may influence
the design process repeatedly through repeated small exchanges of
information [36].
Agreement and partial disagreement. Visualization models typically
describe high-level frameworks; while other models focus on the design
or evaluation stages. The activity-centered model focuses on, and
goes deeper, into the domain problem and data characterization level
briefly described by Munzner as part of a nested visualization design
process [38]. However, the nested model’s recommendation to the
wrong problem threat is validate: observe and interview target users,
and validate: observe adoption rates. This work adds to the nested
model a third, essential validation scheme: validate: write and evaluate
functional specifications (Fig. 3).

Furthermore, while the nested visualization design process separates
the domain characterization from the abstraction stage, the activity
model attempts abstracting the data and tasks as part of the requirements
establishing process, and thus crosses, to some extent, the two levels.
Munzner also suggests that perhaps collapsing the two stages into one

level would be more apt, since “a characterization of a domain with no
attempt at abstraction may not be very useful” [38]. Nevertheless, there
is value in separating the abstraction stage, if only to make sure this
stage is given adequate consideration during the design process.

Other existing design models [14, 24, 37, 45, 52, 57] are also derived
from the HCI human-centered paradigm and miss the opportunities
given by the activity paradigm.

5 DISCUSSION

Visualization, HCI and software engineering research all report [6, 38,
40, 42, 44] that the hardest part of design is getting the requirements
right, which means ensuring that the right problem is solved, as well
as that the solution is appropriate. Defective requirements propagate
into designs and technical solutions, into implementations, and into
validation, with amplified effects. Moreover, domain characterization
is particularly challenging in interdisciplinary visualization settings [27,
44, 55]: domain experts may use domain-specific jargon; may not be
easily accessible for meetings, observation, or feedback; may not be
clear about constraints surrounding the data; or may not have a clear
picture of their needs. This section examines, in context, the merits and
limitations of the activity-centered model.

5.1 Model Merits
Domain characterization model. The activity-centered frame and
model provide a practical way of dealing with the complexity of do-
main characterizations and interdisciplinary communication, while
reconciling several idiosyncrasies of the spatial and nonspatial design
processes. Beyond problem-driven design, understanding the data and
formulating correctly the tasks of interest on these data is relevant
to domain-independent technique-driven approaches as well. In the
long run, the activity-centered abstraction may help derive potential
design patterns for abstracted tasks (e.g., [11]), and to create potentially
reusable techniques in an extensible fashion.
Activity-centered framework. The model introduced here follows
an activity-centered design paradigm. The emphasis on tasks and
activities allows an explicit link between the requirements process and
the abstraction stage, and through it, to the encoding stage of design.
However, general activity-centered design recommends designing for
activities: designing for tasks is deemed too restrictive [40]. In contrast,
the work presented here uses tasks to reveal the underlying precise
requirements of the application domain. This approach follows in this
respect advice from the same design sources: “Requirements made
in the abstract are invariably wrong” [40]. Focusing on detailed, rich,
granular example tasks at this stage helps anchor the requirements
into the target domain. The approach presented here then groups
granular tasks in activities during the requirements analysis step. In a
certain sense, this approach replicates, at the requirements level, the
first component of the diamond design pattern advocated by the HCI
community [40].
Functional specifications. The activity-centered framework further
enables the validation of requirements from a functional perspective, at
the task level, through functional specifications validated by the user.
This intermediate checkpoint, before prototyping, can help ensure that
the right problem is being solved. Functional specifications have the
further potential to reduce the gap of understanding between designers
and users [55], and thus can massively reduce the later redesign of
visualization systems. If nothing else, analyzing the user requirements
and writing the functional specifications should force both the designer
and the technique-driven researcher to actually design their solution,
and realize that the tasks and data characterization and their correct
abstraction need to be properly addressed. Last but not least, the
specifications document can be used as a basis for developing effective
verification and validation plans.

General enumerations of domain characterization methods exist in
both the HCI literature and in the software engineering literature. Yet
generic approaches fail to yield adequate requirements for application
visualization design [27], in addition to being biased towards user
experience practitioners. Notably, while works in other graphics areas
(e.g., sensing) occasionally employ functional specs within an HCD

process [5], in the style of software engineering, these works use the
specs strictly as a preliminary blueprint for prototyping. Their spec is
not used as a communication channel to the user, as recommended in
the activity model, nor is it explicitly integrated with the HCD approach.
Roadmap. Engineering requirements does not last for a set number of
hours or months and then finish [40, 42]: it is an iterative process in
which activities inform and refine one another. In practice, requirements
and specifications evolve and develop as the domain experts interact
with visualization designs, and see what is possible and how certain
features can help them. The requirements activity itself is repeatedly
revisited. The model described here guides this iterative approach, and
has the potential to help speed up and tighten up each iteration of the
design loop.

Implementing the first iteration of the activity-centered model re-
quires typically 60 minutes of face-to-face time with the domain experts,
optionally followed by one or several observation sessions. Since initial
meetings reported in the visualization literature last only a few hours,
and occur in parallel with other projects [44], this model can provide
a valuable roadmap for such meetings. Activity-Centered designers
spend on average 10 minutes on the warm-up and Humans component,
25-30 minutes covering the Tasks, Data, and Flow components, and
10-15 minutes on Nonfunctional Requirements and Probes. Some col-
laborations require multiple interview and observation sessions; some
interview sessions may be dedicated entirely to a Probes discussion
about relevant tools etc.

Although presented in sequence in this paper, the model components
are not crisply delineated in time: as indicated by the model figure,
the conversation flows from one topic to another, and the different
components reinforce each other. Nevertheless, the conversation notes
are organized, for clarity and to enable later analysis, along the network
model components. The supplemental materials include a typical set of
requirements session notes, organized along these lines.

5.2 Assumptions and Limitations
This work assumes that appropriate stakeholders have been identified
before an agenda is issued and requirements meetings take place. There
are several materials available to guide the selection of relevant stake-
holders, in both the HCI and software engineering literature, most
notably Gottesdiener [15] and Rogers et al. [42]; as well as a discussion
of the several types of stakeholders from a data visualization perspec-
tive [44, 59]. This work also assumes, based on experience, that the
availability of stakeholders will become clear by the end of the first
iteration of the domain characterization process; how long they take
to respond to the functional specifications could be an indicator. In
particular, busy experts make time for a collaboration they consider
relevant to their work, even when their only availability turns out to be
a weekly pre-surgery meeting at 5am.

This work also uses an “us” (visualization researchers) and “them”
(users) discourse. This assumption builds on the depth and richness
of modern science, in which expertise in both visualization and the
domain science is unlikely, though not impossible. Other reports com-
ment on the evolving and overlapping roles played by those who both
consume and produce visualization [60] in certain domains. However,
the activity-centered model proposed here bears relevance to at least
one channel of discourse, even in such overlapping collaborations.

The activity-centered model builds on a combination of techniques,
including interviewing, contextual inquiry, and researching and cri-
tiquing similar products. This is by no means the only way to approach
the domain characterization and abstraction process. Other techniques
for domain characterization exist, including focus groups, question-
naires, and studying documentation. In a wider sense, the activity-
centered framework and model instantiation presented in this work are
not the only possible approach to domain characterization.

In the spirit of functional specifications: the activity-centered model
of domain characterization “is complete, to the best of my knowledge;
but if I forgot something, please let me know” [47]. In particular, the
assumption—based on practical experience and the software engineer-
ing literature—that all goals can be broken down into lower-level tasks
may not always hold true.

6 CONCLUSION

This paper introduces and evaluates a novel, activity-centered frame-
work to domain characterization for visualization design. The activity-
centered frame enables a tight link between the domain characterization
level and the abstraction level of the design process, as well as with
its evaluation. This work provides a basic roadmap and agenda, in
the form of a network model, for the domain characterization step.
The activity-centered model assigns value to a visualization based on
user activities; ranks user tasks before the user data; partitions require-
ments in activity-related capabilities and nonfunctional characteristics
and constraints; and explicitly incorporates the user workflows into
the requirements process. A further merit of this model is its explicit
integration of functional specifications, a concept adapted from the soft-
ware engineering literature, into the visualization design nested model.
Functional specifications have the further potential to reduce the gap of
understanding between designers and users, and thus reduce the later
redesign of visualization systems. Using this model systematically can
help remove a number of pitfalls which have been identified multiple
times in the visualization design literature, including lack of real data
and solving the wrong problem.

A potential major benefit of the activity-centered framework and
model is that if the design requirements are consistent with their ac-
tivities, users may tolerate complexity and the requirements to learn
something new: “as long as the complexity and the new things to be
learned feel appropriate to the task, they will feel natural and be viewed
as reasonable” [40]. Designing for activity may improve the openness
of users to novel, powerful visual encodings and interaction paradigms.

ACKNOWLEDGMENTS

This work was supported in part by awards from the National Sci-
ence Foundation (NSF CAREER IIS-1541277, CBET-1250171, DMS-
1557559 and CNS-1625941) and from the National Institutes of Health
(NCI-R01-CA214825). I thank the anonymous reviewers for their gen-
erous and valuable feedback, Torsten Moller, Andy Johnson, and David
Laidlaw for their help while handling various aspects of the review
process, the Electronic Visualization Laboratory for its support, and
my collaborators and students for the awesome work that motivated the
present work.

REFERENCES

[1] J. Albrecht, R. Hwa, and G. E. Marai. The Chinese room: visualization
and interaction to understand and correct ambiguous machine translation.
In Comput. Graph. Forum, vol. 28, pp. 1047–1054, 2009.

[2] J. Aurisano, K. Reda, A. Johnson, G. E. Marai, and J. Leigh. BactoGeNIE:
a large-scale comparative genome visualization for big displays. BMC
bioinformatics, 16(11):S6, 2015.

[3] H. Beyer and K. Holtzblatt. Contextual Design: Defining Customer-
Centered Systems. Morgan Kaufmann Publishers Inc., 1998.

[4] R. Borgo, D. Duke, M. Wallace, and C. Runciman. Multi-cultural Visual-
ization: How functional programming can enrich visualization (and vice
versa). In Proc. Vision, Modeling, and Vis., pp. 245–252, 2006.

[5] C. Bouras, V. Triantafillou, and T. Tsiatsos. A Framework for Intelligent
Virtual Training Environment: The steps from specification to design.
Educational Technology & Society, 5(4):11–26, 2002.

[6] P. Bourque and R. Fairley. Guide to the Software Engineering Body of
Knowledge: Version 3.0, ISO Technical Report 19759. IEEE Comput.
Society, 2014.

[7] M. Brehmer and T. Munzner. A multi-level typology of abstract visualiza-
tion tasks. IEEE Trans. on Vis. and Comp. Graphics, 19(12):2376–2385,
2013.

[8] F. P. Brooks, Jr. The Computer Scientist As Toolsmith II. Commun. ACM,
39(3):61–68, 1996.

[9] S. K. Card, J. D. Mackinlay, and B. Shneiderman, eds. Readings in
Information Visualization: Using Vision to Think. Morgan Kaufmann
Publishers Inc., 1999.

[10] J. R. Cordy and T. N. Graham. GVL: Visual specification of graphical
output. Journal of Visual Languages & Computing, 3(1):25–47, 1992.

[11] B. Craft and P. Cairns. Beyond guidelines: what can we learn from the
visual information seeking mantra? In Information Vis. 2005. Proceedings.
Ninth International Conference on, pp. 110–118, 2005.

MARAI: ACTIVITY-CENTERED DOMAIN CHARACTERIZATION FOR PROBLEM-DRIVEN SCIENTIFIC VISUALIZATION 921

Fig. 3. Expanded Domain Characterization stage in the nested model.
The updated stage model features a third validation scheme: validate:
write and evaluate functional specifications. The nested stages of char-
acterization and abstraction also cross over.

model offers an interpretation of why the scenario worked well in
practice: in this case, although “too broadly-scoped”, the scenario
reflected the designers’ understanding of the user activity. Furthermore,
since the scenario was sent to the users for evaluation, it played the role
of a partial functional specification, in its activity-centered meaning.
Significantly, the report states that the users were able to make a total
of over 300 suggestions after reading the scenario—a testament to
the practical value of functional specs. The activity-centered model
offers a theoretical framework for this reported case, and a roadmap
for employing functional specifications systematically in the design
process.

Aspects of the activity model are also reflected in the pitfalls
model [44], although the latter does not necessarily provide actionable
guidance on how to avoid those pitfalls. From a practical standpoint,
the activity model combines well with their nine-level framework, and
can be used to prevent pitfalls PF-4 (“no data”), PF-6, 7, and 8 (“not
a visualization problem”), PF-9 (“existing tools”), and PF-10 (“users
and tasks”). Alternatively, the activity-centered model could be used
to analyze the first stages of the nine-level framework, as well as other
different process approaches to domain characterization.

Certain aspects of the activity-centered model have also been cap-
tured elsewhere: for example, certain types of nonfunctional require-
ments and probes have been preliminarily considered by McKenna et
al. [37], in the form of constraints, considerations, and opportunities.
The activity-centered model offers a unified framework for the con-
sistent and systematic treatment of these loose aspects of the domain
characterization process.

The results reported here also support similar findings in the field
regarding the role of active collaborators [22]. Furthermore, these
collaborators may indeed have different roles, expertise and knowl-
edge that apply during the analysis process [59], and may influence
the design process repeatedly through repeated small exchanges of
information [36].
Agreement and partial disagreement. Visualization models typically
describe high-level frameworks; while other models focus on the design
or evaluation stages. The activity-centered model focuses on, and
goes deeper, into the domain problem and data characterization level
briefly described by Munzner as part of a nested visualization design
process [38]. However, the nested model’s recommendation to the
wrong problem threat is validate: observe and interview target users,
and validate: observe adoption rates. This work adds to the nested
model a third, essential validation scheme: validate: write and evaluate
functional specifications (Fig. 3).

Furthermore, while the nested visualization design process separates
the domain characterization from the abstraction stage, the activity
model attempts abstracting the data and tasks as part of the requirements
establishing process, and thus crosses, to some extent, the two levels.
Munzner also suggests that perhaps collapsing the two stages into one

level would be more apt, since “a characterization of a domain with no
attempt at abstraction may not be very useful” [38]. Nevertheless, there
is value in separating the abstraction stage, if only to make sure this
stage is given adequate consideration during the design process.

Other existing design models [14, 24, 37, 45, 52, 57] are also derived
from the HCI human-centered paradigm and miss the opportunities
given by the activity paradigm.

5 DISCUSSION

Visualization, HCI and software engineering research all report [6, 38,
40, 42, 44] that the hardest part of design is getting the requirements
right, which means ensuring that the right problem is solved, as well
as that the solution is appropriate. Defective requirements propagate
into designs and technical solutions, into implementations, and into
validation, with amplified effects. Moreover, domain characterization
is particularly challenging in interdisciplinary visualization settings [27,
44, 55]: domain experts may use domain-specific jargon; may not be
easily accessible for meetings, observation, or feedback; may not be
clear about constraints surrounding the data; or may not have a clear
picture of their needs. This section examines, in context, the merits and
limitations of the activity-centered model.

5.1 Model Merits
Domain characterization model. The activity-centered frame and
model provide a practical way of dealing with the complexity of do-
main characterizations and interdisciplinary communication, while
reconciling several idiosyncrasies of the spatial and nonspatial design
processes. Beyond problem-driven design, understanding the data and
formulating correctly the tasks of interest on these data is relevant
to domain-independent technique-driven approaches as well. In the
long run, the activity-centered abstraction may help derive potential
design patterns for abstracted tasks (e.g., [11]), and to create potentially
reusable techniques in an extensible fashion.
Activity-centered framework. The model introduced here follows
an activity-centered design paradigm. The emphasis on tasks and
activities allows an explicit link between the requirements process and
the abstraction stage, and through it, to the encoding stage of design.
However, general activity-centered design recommends designing for
activities: designing for tasks is deemed too restrictive [40]. In contrast,
the work presented here uses tasks to reveal the underlying precise
requirements of the application domain. This approach follows in this
respect advice from the same design sources: “Requirements made
in the abstract are invariably wrong” [40]. Focusing on detailed, rich,
granular example tasks at this stage helps anchor the requirements
into the target domain. The approach presented here then groups
granular tasks in activities during the requirements analysis step. In a
certain sense, this approach replicates, at the requirements level, the
first component of the diamond design pattern advocated by the HCI
community [40].
Functional specifications. The activity-centered framework further
enables the validation of requirements from a functional perspective, at
the task level, through functional specifications validated by the user.
This intermediate checkpoint, before prototyping, can help ensure that
the right problem is being solved. Functional specifications have the
further potential to reduce the gap of understanding between designers
and users [55], and thus can massively reduce the later redesign of
visualization systems. If nothing else, analyzing the user requirements
and writing the functional specifications should force both the designer
and the technique-driven researcher to actually design their solution,
and realize that the tasks and data characterization and their correct
abstraction need to be properly addressed. Last but not least, the
specifications document can be used as a basis for developing effective
verification and validation plans.

General enumerations of domain characterization methods exist in
both the HCI literature and in the software engineering literature. Yet
generic approaches fail to yield adequate requirements for application
visualization design [27], in addition to being biased towards user
experience practitioners. Notably, while works in other graphics areas
(e.g., sensing) occasionally employ functional specs within an HCD

process [5], in the style of software engineering, these works use the
specs strictly as a preliminary blueprint for prototyping. Their spec is
not used as a communication channel to the user, as recommended in
the activity model, nor is it explicitly integrated with the HCD approach.
Roadmap. Engineering requirements does not last for a set number of
hours or months and then finish [40, 42]: it is an iterative process in
which activities inform and refine one another. In practice, requirements
and specifications evolve and develop as the domain experts interact
with visualization designs, and see what is possible and how certain
features can help them. The requirements activity itself is repeatedly
revisited. The model described here guides this iterative approach, and
has the potential to help speed up and tighten up each iteration of the
design loop.

Implementing the first iteration of the activity-centered model re-
quires typically 60 minutes of face-to-face time with the domain experts,
optionally followed by one or several observation sessions. Since initial
meetings reported in the visualization literature last only a few hours,
and occur in parallel with other projects [44], this model can provide
a valuable roadmap for such meetings. Activity-Centered designers
spend on average 10 minutes on the warm-up and Humans component,
25-30 minutes covering the Tasks, Data, and Flow components, and
10-15 minutes on Nonfunctional Requirements and Probes. Some col-
laborations require multiple interview and observation sessions; some
interview sessions may be dedicated entirely to a Probes discussion
about relevant tools etc.

Although presented in sequence in this paper, the model components
are not crisply delineated in time: as indicated by the model figure,
the conversation flows from one topic to another, and the different
components reinforce each other. Nevertheless, the conversation notes
are organized, for clarity and to enable later analysis, along the network
model components. The supplemental materials include a typical set of
requirements session notes, organized along these lines.

5.2 Assumptions and Limitations
This work assumes that appropriate stakeholders have been identified
before an agenda is issued and requirements meetings take place. There
are several materials available to guide the selection of relevant stake-
holders, in both the HCI and software engineering literature, most
notably Gottesdiener [15] and Rogers et al. [42]; as well as a discussion
of the several types of stakeholders from a data visualization perspec-
tive [44, 59]. This work also assumes, based on experience, that the
availability of stakeholders will become clear by the end of the first
iteration of the domain characterization process; how long they take
to respond to the functional specifications could be an indicator. In
particular, busy experts make time for a collaboration they consider
relevant to their work, even when their only availability turns out to be
a weekly pre-surgery meeting at 5am.

This work also uses an “us” (visualization researchers) and “them”
(users) discourse. This assumption builds on the depth and richness
of modern science, in which expertise in both visualization and the
domain science is unlikely, though not impossible. Other reports com-
ment on the evolving and overlapping roles played by those who both
consume and produce visualization [60] in certain domains. However,
the activity-centered model proposed here bears relevance to at least
one channel of discourse, even in such overlapping collaborations.

The activity-centered model builds on a combination of techniques,
including interviewing, contextual inquiry, and researching and cri-
tiquing similar products. This is by no means the only way to approach
the domain characterization and abstraction process. Other techniques
for domain characterization exist, including focus groups, question-
naires, and studying documentation. In a wider sense, the activity-
centered framework and model instantiation presented in this work are
not the only possible approach to domain characterization.

In the spirit of functional specifications: the activity-centered model
of domain characterization “is complete, to the best of my knowledge;
but if I forgot something, please let me know” [47]. In particular, the
assumption—based on practical experience and the software engineer-
ing literature—that all goals can be broken down into lower-level tasks
may not always hold true.

6 CONCLUSION

This paper introduces and evaluates a novel, activity-centered frame-
work to domain characterization for visualization design. The activity-
centered frame enables a tight link between the domain characterization
level and the abstraction level of the design process, as well as with
its evaluation. This work provides a basic roadmap and agenda, in
the form of a network model, for the domain characterization step.
The activity-centered model assigns value to a visualization based on
user activities; ranks user tasks before the user data; partitions require-
ments in activity-related capabilities and nonfunctional characteristics
and constraints; and explicitly incorporates the user workflows into
the requirements process. A further merit of this model is its explicit
integration of functional specifications, a concept adapted from the soft-
ware engineering literature, into the visualization design nested model.
Functional specifications have the further potential to reduce the gap of
understanding between designers and users, and thus reduce the later
redesign of visualization systems. Using this model systematically can
help remove a number of pitfalls which have been identified multiple
times in the visualization design literature, including lack of real data
and solving the wrong problem.

A potential major benefit of the activity-centered framework and
model is that if the design requirements are consistent with their ac-
tivities, users may tolerate complexity and the requirements to learn
something new: “as long as the complexity and the new things to be
learned feel appropriate to the task, they will feel natural and be viewed
as reasonable” [40]. Designing for activity may improve the openness
of users to novel, powerful visual encodings and interaction paradigms.

ACKNOWLEDGMENTS

This work was supported in part by awards from the National Sci-
ence Foundation (NSF CAREER IIS-1541277, CBET-1250171, DMS-
1557559 and CNS-1625941) and from the National Institutes of Health
(NCI-R01-CA214825). I thank the anonymous reviewers for their gen-
erous and valuable feedback, Torsten Moller, Andy Johnson, and David
Laidlaw for their help while handling various aspects of the review
process, the Electronic Visualization Laboratory for its support, and
my collaborators and students for the awesome work that motivated the
present work.

REFERENCES

[1] J. Albrecht, R. Hwa, and G. E. Marai. The Chinese room: visualization
and interaction to understand and correct ambiguous machine translation.
In Comput. Graph. Forum, vol. 28, pp. 1047–1054, 2009.

[2] J. Aurisano, K. Reda, A. Johnson, G. E. Marai, and J. Leigh. BactoGeNIE:
a large-scale comparative genome visualization for big displays. BMC
bioinformatics, 16(11):S6, 2015.

[3] H. Beyer and K. Holtzblatt. Contextual Design: Defining Customer-
Centered Systems. Morgan Kaufmann Publishers Inc., 1998.

[4] R. Borgo, D. Duke, M. Wallace, and C. Runciman. Multi-cultural Visual-
ization: How functional programming can enrich visualization (and vice
versa). In Proc. Vision, Modeling, and Vis., pp. 245–252, 2006.

[5] C. Bouras, V. Triantafillou, and T. Tsiatsos. A Framework for Intelligent
Virtual Training Environment: The steps from specification to design.
Educational Technology & Society, 5(4):11–26, 2002.

[6] P. Bourque and R. Fairley. Guide to the Software Engineering Body of
Knowledge: Version 3.0, ISO Technical Report 19759. IEEE Comput.
Society, 2014.

[7] M. Brehmer and T. Munzner. A multi-level typology of abstract visualiza-
tion tasks. IEEE Trans. on Vis. and Comp. Graphics, 19(12):2376–2385,
2013.

[8] F. P. Brooks, Jr. The Computer Scientist As Toolsmith II. Commun. ACM,
39(3):61–68, 1996.

[9] S. K. Card, J. D. Mackinlay, and B. Shneiderman, eds. Readings in
Information Visualization: Using Vision to Think. Morgan Kaufmann
Publishers Inc., 1999.

[10] J. R. Cordy and T. N. Graham. GVL: Visual specification of graphical
output. Journal of Visual Languages & Computing, 3(1):25–47, 1992.

[11] B. Craft and P. Cairns. Beyond guidelines: what can we learn from the
visual information seeking mantra? In Information Vis. 2005. Proceedings.
Ninth International Conference on, pp. 110–118, 2005.

922 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 1, JANUARY 2018

[12] V. Doshi, S. Tuteja, K. Bharadwaj, D. Tantillo, T. Marrinan, J. Patton, and
G. E. Marai. StickySchedule: an interactive multi-user application for
conference scheduling on large-scale shared displays. In Proc. of 6th ACM
International Symp. Pervasive Displays, 2017.

[13] K. A. Ericsson and H. A. Simon. Protocol Analysis: Verbal Reports as
Data. Cambridge, Mass. MIT Press, 1993.

[14] S. Goodwin, J. Dykes, S. Jones, I. Dillingham, G. Dove, A. Duffy,
A. Kachkaev, A. Slingsby, and J. Wood. Creative User-Centered Vi-
sualization Design for Energy Analysts and Modelers. IEEE Trans. Vis.
Comput. Graph., 19(12):2516–2525, 2013.

[15] E. Gottesdiener. The Software Requirements Memory Jogger: A Desk-
top Guide to Help Software and Business Teams Develop and Manage
Requirements. GOAL/QPC (Growth Opportunity Alliance of Lawrence),
2009.

[16] D. Gotz and M. X. Zhou. Characterizing Users’ Visual Analytic Activity
for Insight Provenance. Information Vis., 8(1):42–55, 2009.

[17] B. Gower. Scientific Method: An Historical and Philosophical Introduc-
tion. Psychology Press, 1997.

[18] M. A. Haque, W. Anderst, S. Tashman, and G. E. Marai. Hierarchical
model-based tracking of cervical vertebrae from dynamic biplane radio-
graphs. Medical engineering & physics, 35(7):994–1004, 2013.

[19] S. Hastie and S. Wojewoda. Standish Group 2015 Chaos Report-Q&A
with Jennifer Lynch. Retrieved, 1(15):2016, 2015.

[20] K. Holtzblatt and S. Jones. Contextual Inquiry: A Participatory Technique
for System Design. Lawrence Erlbaum Associates, 1993.

[21] P. Isenberg, T. Zuk, C. Collins, and S. Carpendale. Grounded Evaluation
of Information Visualization. In Proc. 2008 Workshop BEyond Time and
Errors: Novel evaLuation Methods for Information Visualization, BELIV,
pp. 6:1–6:8, 2008.

[22] R. M. Kirby and M. Meyer. Visualization collaborations: What works and
why. IEEE Computer Graphics and Applications, 33(6):82–88, 2013.

[23] S. Kitsiou, M. Thomas, G. E. Marai, N. Maglaveras, G. Kondos, R. Arena,
and B. Gerber. Development of an innovative mhealth platform for remote
physical activity monitoring and health coaching of cardiac rehabilitation
patients. In Biomedical & Health Informatics (BHI), 2017 IEEE EMBS
International Conference on, pp. 133–136, 2017.

[24] L. C. Koh, A. Slingsby, J. Dykes, and T. S. Kam. Developing and applying
a user-centered model for the design and implementation of information
visualization tools. In Information Visualisation (IV), 2011 15th Interna-
tional Conf., pp. 90 – 95, 2011.

[25] A. Leontiev. Activity, Consciousness and Personality. Prentice Hall, 1978.
[26] S. Li, S. Dragicevic, F. A. Castro, M. Sester, S. Winter, A. Coltekin,

C. Pettit, B. Jiang, J. Haworth, A. Stein, et al. Geospatial big data handling
theory and methods: A review and research challenges. ISPRS Journal of
Photogrammetry and Remote Sensing, 115:119–133, 2016.

[27] D. Lloyd and J. Dykes. Human-Centered Approaches in Geovisualization
Design: Investigating Multiple Methods Through a Long-Term Case Study.
IEEE Trans. Vis. Comput. Graph., 17(12):2498–2507, 2011.

[28] T. Luciani, B. Cherinka, D. Oliphant, S. Myers, W. M. Wood-Vasey,
A. Labrinidis, and G. E. Marai. Large-Scale Overlays and Trends: Visually
Mining, Panning and Zooming the Observable Universe. IEEE Trans. Vis.
Comput. Graph., 20(7):1048–1061, 2014.

[29] T. Luciani, J. Wenskovitch, K. Chen, D. Koes, T. Travers, and G. E. Marai.
FixingTIM: interactive exploration of sequence and structural data to
identify functional mutations in protein families. In BMC proceedings,
vol. 8, 2014.

[30] C. Ma, T. Luciani, A. Terebus, J. Liang, and G. E. Marai. PRODIGEN: vi-
sualizing the probability landscape of stochastic gene regulatory networks
in state and time space. BMC bioinformatics, 18(2):24, 2017.

[31] N. Maiden. Card Sorts to Acquire Requirements. IEEE Software, 26(3):85–
86, 2009.

[32] G. E. Marai, T. Luciani, A. Maries, S. L. Yilmaz, and M. B. Nik. Visual De-
scriptors for Dense Tensor Fields in Computational Turbulent Combustion:
A Case Study. J. Imaging Sci. and Tech., 2016(1):1–11, 2016.

[33] A. Maries, T. Luciani, P. H. Pisciuneri, M. B. Nik, S. L. Yilmaz, P. Givi,
and G. E. Marai. A clustering method for identifying regions of interest
in turbulent combustion tensor fields. In Visualization and Processing of
Higher Order Descriptors for Multi-Valued Data, pp. 323–338. Springer,
2015.

[34] A. Maries, N. Mays, M. Hunt, K. F. Wong, W. Layton, R. Boudreau,
C. Rosano, and G. E. Marai. Grace: A visual comparison framework for
integrated spatial and non-spatial geriatric data. IEEE Trans. Vis. Comput.
Graph., 19(12):2916–2925, 2013.

[35] B. H. McCormick. Visualization in scientific computing. Comput. Graph.,
21(6):1–14, 1987.

[36] N. McCurdy, J. Dykes, and M. Meyer. Action Design Research and
Visualization Design. pp. 10–18, 2016.

[37] S. McKenna, D. Mazur, J. Agutter, and M. Meyer. Design Activity
Framework for Visualization Design. IEEE Trans. Vis. Comput. Graph.,
2014.

[38] T. Munzner. A Nested Model for Visualization Design and Validation.
IEEE Trans. Vis. Comput. Graph., 15(6):921–928, 2009.

[39] T. Munzner. Visualization Analysis and Design. CRC Press, 2014.
[40] D. A. Norman. The Design of Everyday Things: Revised and Expanded

Edition. Basic Books, Inc., 2013.
[41] A. J. Pretorius and J. J. Van Wijk. What Does the User Want to See?:

What Do the Data Want to Be? Information Vis., 8(3):153–166, 2009.
[42] Y. Rogers, H. Sharp, and J. Preece. Interaction Design: Beyond Human

- Comput. Interaction. Interaction Design: Beyond Human - Comput.
Interaction. Wiley, 2011.

[43] H.-J. Schulz, T. Nocke, M. Heitzler, and H. Schumann. A design space of
visualization tasks. IEEE Trans. on Vis. and Comp. Graphics, 19(12):2366–
2375, 2013.

[44] M. Sedlmair, M. Meyer, and T. Munzner. Design Study Methodology:
Reflections from the Trenches and the Stacks. IEEE Trans. Vis. Comput.
Graph., 18(12):2431–2440, 2012.

[45] B. Shneiderman and C. Plaisant. Strategies for Evaluating Information
Visualization Tools: Multi-dimensional In-depth Long-term Case Studies.
In Proc. 2006 AVI Workshop BEyond Time and Errors: Novel Evaluation
Methods for Information Visualization, BELIV, pp. 1–7, 2006.

[46] A. M. Smith, W. Xu, Y. Sun, J. R. Faeder, and G. E. Marai. RuleBen-
der: Integrated modeling, simulation and Visualization for rule-based
intracellular biochemistry. BMC Bioinformatics, 13(S-8):S3, 2012.

[47] J. Spolsky. The Joel Test: 12 Steps to Better Code. Joel on Soft-
ware, https://www.joelonsoftware.com/2000/08/09/the-joel-test-12-steps-
to-better-code/, 2000.

[48] R. R. Springmeyer, M. M. Blattner, and N. L. Max. A Characterization of
the Scientific Data Analysis Process. In Proc. 3rd Conf. Vis. ’92, VIS, pp.
235–242, 1992.

[49] N. A. Stanton, P. M. Salmon, G. H. Walker, C. Baber, and D. P. Jenkins.
Human Factors Methods: A Practical Guide for Engineering And Design.
Ashgate Publishing Company, 2006.

[50] A. S. Szalay. The Sloan Digital Sky Survey and Beyond. SIGMOD Rec.,
Tribute to Jim Gray, 37(2):61–66, 2008.

[51] M. Thomas, T. Kanampallil, J. Abraham, and G. E. Marai. Echo: A large
display interactive visualization of icu data for effective care handoffs. In
The 8th IEEE Workshop on Visual Analytics in Healthcare VAHC’17, pp.
1–8, 2017.

[52] M. Tory and T. Möller. Human Factors in Visualization Research. IEEE
Trans. Vis. Comput. Graph., 10(1):72–84, 2004.

[53] M. Tory and T. Moller. Rethinking Visualization: A High-Level Taxonomy.
In Proc. IEEE Symp. Information Vis., InfoVis, pp. 151–158, 2004.

[54] J. J. Van Wijk. The value of visualization. In Visualization, 2005. VIS 05.
IEEE, pp. 79–86, 2005.

[55] J. J. Van Wijk. Bridging the gaps. IEEE Computer Graphics and Applica-
tions, 26(6), 2006.

[56] L. Vygotsky. Thought and Language. MIT Press, 1926.
[57] I. Wassink, O. Kulyk, D. E. van Dijk, G. van der Veer, and D. P. van der Vet.

Applying a user-centred approach to interactive visualization design. In
Trends in Interactive Visualization, Advanced Information and Knowledge
Processing. Springer Verlag, 2008.

[58] J. E. Wenskovitch, L. A. Harris, J.-J. Tapia, J. R. Faeder, and G. E. Marai.
MOSBIE: a tool for comparison and analysis of rule-based biochemical
models. BMC bioinformatics, 15(1):316, 2014.

[59] K. M. Winters, D. Lach, and J. B. Cushing. Considerations for character-
izing domain problems. In Proceedings of the Fifth Workshop on Beyond
Time and Errors: Novel Evaluation Methods for Visualization, pp. 16–22,
2014.

[60] J. Wood, R. Beecham, and J. Dykes. Moving beyond sequential design:
Reflections on a rich multi-channel approach to data visualization. IEEE
Trans. Vis. Comput. Graph., 20(12):2171–2180, 2014.

[61] W. Xu, A. M. Smith, J. R. Faeder, and G. E. Marai. RuleBender: a visual
interface for rule-based modeling. Bioinformatics, 27(12):1721–1722,
2011.

