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Abstract. As the human body skeleton can be represented as a sparse
graph, it is natural to exploit graph convolutional networks (GCNs) to
model the articulated body structure for 3D human pose estimation
(HPE). However, a vanilla graph convolutional layer, the building block
of a GCN, only models the local relationships between each body joint
and their neighbors on the skeleton graph. Some global attributes, e.g.,
the action of the person, can be critical to 3D HPE, especially in the
case of occlusion or depth ambiguity. To address this issue, this paper
introduces a new 3D HPE framework by learning global pose features in
GCNs. Specifically, we add a global node to the graph and connect it to
all the body joint nodes. On one hand, global features are updated by
aggregating all body joint features to model the global attributes. On
the other hand, the feature update of each body joint depends on not
only their neighbors but also the global node. Furthermore, we propose
a heterogeneous multi-task learning framework to learn the local and
global features. While each local node regresses the 3D coordinate of
the corresponding body joint, we force the global node to classify an ac-
tion category or learn a low-dimensional pose embedding. Experimental
results demonstrate the effectiveness of the proposed approach.

1 Introduction

The objective of 3D human pose estimation (HPE) is to predict the positions of
human body joints in the camera coordinate system from a single RGB image.
This task gains a lot of attention in the last few years [1–10] since it has vari-
ous applications in human-computer interaction, action recognition and motion
capture. 3D HPE is essentially an ill-posed problem because one pose in the 2D
image coordinate system may correspond to multiple poses in the 3D camera
coordinate system. But this ambiguity can be alleviated to a large extent by
exploiting the structure information of the human body [11, 12].

Two streams of approaches for 3D HPE have been investigated. The first
stream of methods aim to build an end-to-end system that predicts the 3D
coordinates of body joints directly from the input image [3, 13]. Early approaches
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Fig. 1. Illustration of a graph convolutional network (GCN) with a global node u

for 3D human pose estimation. The input is the 2D body joint locations predicted
by an off-the-shelf 2D pose detector with a zero-initialized global feature vector. The
GCN repeatedly transforms and aggregates features of local and global nodes to learn
increasingly powerful representations. Finally, it predicts the 3D pose as well as the
output of an auxiliary task, e.g., an action label of the pose.

[14, 15] are based on hand-designed features but they are likely to fail in some
challenging scenarios, e.g., depth ambiguity, viewpoint variation and occlusion.
In recent years, the development of convolutional neural networks pushes the
edge of this problem and significantly improves the estimation accuracy with the
help of large-scale image data [16–20]. The second stream of approaches divide
the 3D HPE into two subtasks, i.e., the prediction of 2D joints locations and 2D-
to-3D pose regression [1, 11, 12]. Martinez et al. [1] prove that 3D coordinates of
human body joints could be accurately estimated merely from the output of a
2D pose detector.

To model the articulated body structure, graph convolutional networks (GCNs)
[21, 22] have been introduced to solve the 2D-to-3D pose lifting problem [5, 23,
11]. GCNs are generalized from CNNs to construct a non-linear mapping in a
graph domain. Different from CNNs, which act on image patches, GCNs update
the features of each node from its neighbouring nodes in a graph. In this way,
the prior of the graph structure is fed into the GCN model.

Though GCNs have shown decent results in 2D-to-3D pose lifting [11, 23,
5], they have one potential limitation. A vanilla graph convolutional layer, the
building block of a GCN, only models the local relationships between each body
joint and their neighbors. Some global attributes, e.g., the action or viewpoint
of the person, can be critical to 3D HPE, especially in the case of occlusion or
depth ambiguity. Unfortunately, the importance of global features to 3D HPE is
largely ignored by prior work.
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This paper introduces a new 3D HPE framework by learning global pose fea-
tures in GCNs. Specifically, we first add a global node to the graph and connect
it to all the body joint nodes. On one hand, the global node aggregates features
from all body joints to model the global attributes. On the other hand, the fea-
ture update of each body joint depends on not only their neighbors but also
the global node. To facilitate the learning of meaningful global attributes, we
propose a heterogeneous multi-task learning framework. Specifically, we intro-
duce auxiliary learning tasks for the global node. While each local node regresses
the 3D coordinates of the corresponding body joint, we force the global node to
classify an action category or learn a low-dimensional pose embedding.

Extensive ablation study indicates that (1) learning global features in a GCN
can improve its performance and (2) solving the auxiliary learning tasks together
with 3D HPE is beneficial.

In sum, the contribution of this paper is threefold.

– To our knowledge, this is the first work to learn global pose features in a
GCN for 3D HPE. We add a global node to the skeleton graph and connect
it to every body joint node so that each local node has access to global
information during feature update.

– We propose a heterogeneous multi-task learning framework to facilitate the
learning of effective global representations in a GCN. We introduce two aux-
iliary learning tasks, i.e., action classification and pose embedding, to achieve
this goal.

– We perform extensive ablation study to investigate whether the extra global
node and the auxiliary tasks help 3D HPE. Experimental results indicate
that the proposed approach can outperform some state-of-the-art methods.

2 Related Work

3D Human Pose Estimation. The last two decades have seen the rapid devel-
opment of 3D HPE. Early work builds 3D HPE systems on handcrafted features
and geometric constraints [24–26]. Recently, state-of-the-art methods are based
on deep neural networks. Chen et al. [27] propose a weekly-supervised encoder-
decoder framework that can learn geometry-aware representations using only
2D annotations. Wang et al. [12] design a new network architecture to learn the
bi-directional dependencies of body parts. 3D HPE can also be divided into two
subtasks, i.e., 2D HPE and 2D-to-3D lifting. For example, Martinez et al. [1]
use a fully connected network to regress the 3D body joint locations from the
output of an off-the-shelf 2D pose detector. This simple baseline is very effective
and outperforms the state-of-the-art one-stage approaches.

The works most related to ours are [11, 23, 5, 28, 29], which also apply GCNs
for 3D pose regression. Zhao et al. [11] propose a semantic GCN to learn semantic
information not explicitly represented in the graph. Ci et al. [23] extend the GCN
to a locally connected network to improve its representation capability. Cai et al.
[5] introduce a local-to-global network to learn multi-scale features for the graph-
based representations. Liu et al. [28] study different weight sharing methods in
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the graph convolution. Zou et al. [29] introduce a high-order GCN for 3D HPE.
However, the main contribution of this paper is to learn global pose features
in a GCN, which these prior approaches ignore. Furthermore, while they only
focus on the task of 3D HPE, we introduce a heterogeneous multi-task learning
framework with auxiliary tasks to facilitate the learning of global features. And
we generate labels for global node supervision by ourselves. The global features
in our setting can be directly used for other follow-on tasks.

Graph Convolutional Networks. GCNs generalize CNNs by performing
convolutions on graph data. They have been widely used to solve problems like
the citation network [21] and molecular property prediction [30]. There are two
categories of GCNs: spectral approaches and non-spectral (spatial) approaches
[22]. The former are defined in the Fourier domain by calculating the eigen-
decomposition of graph Laplacian [31], while the latter apply neural message
passing to features defined on a graph [30]. Our approach falls into the second
category. Battaglia et al. [32] generalize previous work into a unified graph net-
work and also discuss the use of global node. While they focus on graph or node
classification, our model is specially designed for 3D HPE. More importantly, we
introduce a heterogeneous multi-task learning framework to learn global pose
features via auxiliary tasks.

3 Approach

In this section, we first revisit the vanilla GCN, which models the local relation-
ship between each node and their neighbors. Then, we propose to learn global
pose features in a GCN and introduce a heterogeneous multi-task learning frame-
work. Finally, we discuss the network architecture for 3D HPE.

3.1 Revisit GCN

Let G = (V, E) denote a graph where V is a set of N nodes and E is the collection
of all edges. We can represent the collection of all edges via an adjacency matrix
A ∈ {0, 1}N×N . Let xi ∈ RD denote a D-dimensional feature vector correspond-
ing to each node i. X ∈ RD×N collects all feature vectors, whose i-th column is
xi. Then a graph convolutional layer [21], the building block of a GCN, updates
features defined on the nodes through the following operation:

X′ = σ(WXÂ) (1)

where X′ ∈ R
D′

×N is the updated feature matrix, D′ is the dimension of the
updated feature vector of each node, σ(·) is an activation function, e.g., ReLU,

W ∈ R
D′

×D is a learnable weight matrix. Â = D̃− 1

2 (A+I)D̃− 1

2 is a normalized
version of A. Adding an identity matrix I to A means to include self-connections
in the graph so that the update of a node feature vector also depends on itself.
D̃ is the diagonal node degree matrix of A+ I and helps the graph convolution
to retain the scale of features.
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Fig. 2. Illustration of the feature update in a graph convolutional layer. Blue arrows
and red arrows respectively correspond to self-connections and other-connections. (a)
A simple graph consisting of three nodes. (b) The updated features of each node (the
right side) depend on the input features of itself and its neighboring nodes (the left
side). (c)(d)(e) respectively show the feature update of nodes A, B and C.

A GCN takes as input a feature vector associated with each node and re-
peatedly transforms them via a composition of multiple graph convolutions to
get increasingly more powerful representations, which are used by the last layer
to predict the output.

Let âij be the entry of Â at (i, j). Ni and N̂i ≡ Ni∪{i} denote the neighbors

of node i excluding and including the node itself respectively. This means j ∈ N̂i

if and only if âij 6= 0. Then Eq. (1) can be written equivalently as below.

x′
i =σ(

∑

j∈N̂i

Wxj âij) (2)

where i ∈ {1, ..., N}, x′
i is the i-th column of X′ and also the updated feature

vector of node i.
We empirically find using different weight matrices for the self-node and

neighbors can significantly improve the performance:

x′
i = σ(Qxiâii +

∑

j∈Ni

Wxj âij) (3)

where Q is the weight matrix corresponding to the self-transformation. We will
use this formulation as our baseline GCN in the experiments.

Fig. 2 demonstrates a graph convolutional layer for a simple 3-node graph
and presents how each node is updated according to its neighbouring nodes.
Within a single graph convolutional layer, only those nodes which are directly
connected with a node could transmit information to it. There is no explicit
mechanism for the GCN to learn global features that could be critical to 3D
HPE. We will introduce our solution to this problem in the next section.

3.2 Learning Global Pose Features

Some global pose features, e.g., the action, viewpoint or scale of a person, can
help reduce uncertainty in 3D HPE. For example, the action of a person, e.g.,
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Fig. 3. Illustration of the feature update for local nodes and the global node. Arrays of
the same color means applying the same weight matrix. (a) A simple graph composed
of three nodes: A, B and C. u is the added global node, which is connected to all local
nodes. (b) The feature update of local nodes. (c) The feature update of the global node.

walking or sitting, provides strong constraints on the relative locations of body
joints, which eases pose estimation. This motivates us to learn global pose fea-
tures in a GCN for 3D HPE.

Graph convolution with a global node. To achieve this goal, we add a
global node to the graph and connect it to all local nodes, e.g., the body joint
nodes. The global features are obtained by aggregating all body joint features
to model the global pose attributes. The feature update of each body joint
depends on not only their neighbors but also the global node. Specifically, a
graph convolutional layer with a global node is defined as:

x′
i = σ(Qxiâii +

∑

j∈Ni

Wxj âij +Txu) (4)

x′
u = σ(

1

N

N∑

j=1

Rxj + Sxu) (5)

where i ∈ {1, · · · , N} indexes a local node and u represents the global node,
Q,W,T,R,S are different weight matrices. Since the global node and local
nodes carry different types of features, we assign different transformation matri-
ces to them.

Eq. (4) is the feature update rule for local nodes, which is the summation of
three terms. The first term is the feature transformation of the i-th node itself,
corresponding to the self-connection. The second term aggregates the trans-
formed features of the neighboring nodes. The last term transforms the global
features. Eq. (5) is the update function for global features, which sums up two
terms. The first term aggregates features from all local nodes. The second term
is the feature transformation of the global node itself, corresponding to the self-
connection of the global node.

Fig. 3 demonstrates the feature updates of local nodes and the global node.
The global node takes information from all local nodes and also contributes
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Fig. 4. This figure shows the GCN architecture we apply in our experiments. The
building block is a residual block composed of two graph convolutional layers with 128
channels. This block is repeated four times. Each graph convolutional layer (except for
the last one) is followed by a batch normalization layer and a ReLU activation layer.

to the feature update of local nodes. This gives local nodes access to global
information during inference.

Heterogeneous multi-task learning. While the output of each local node
is supervised by the 3D coordinate of the corresponding body joint, it remains
unclear how to deal with the output of the global node during training. One
solution is to simply ignore the update of global features in the last layer. In this
case, gradients could still propagate from the loss of local nodes to the global
features in previous layers to update the weights during training. This is because
the update of local features at the current layer relies on the global features at
the previous layer. During inference, we only need to check the output of the
local nodes to get the 3D human pose prediction. But one potential limitation
of this solution is that the lack of supervision for the global node may lead to
inferior learning of global pose features.

To address this problem, we propose a heterogeneous multi-task learning
framework. While local nodes still output 3D locations of body joints, the global
node is responsible for an auxiliary task. Note the auxiliary task should be
related to the main task, i.e., 3D HPE, and facilitate the learning of global pose
features. In this paper, we consider two different kinds of auxiliary tasks: action
classification and pose embedding.

Action classification means to classify the 3D pose to be predicted into an
action label, e.g., running or jumping. The output of the global node is the
probability distribution over action classes. Due to the lack of action annotations
in the dataset, we need to generate some pseudo labels. Specifically, we use K-
means to cluster the ground truth 3D poses in the training data to obtain their
class labels and each cluster corresponds to an action class. Then, these action
labels can be used to supervise the output of the global node during training,
e.g., via a cross-entropy loss.

Pose embedding means to learn a low-dimensional representation of the pose.
The output of the global node is a real-value embedding vector. We use a 2-layer
decoder to reconstruct the 3D human pose from the embedding. The reconstruc-
tion error serves as the loss function of the global node. The decoder network is
learned end-to-end with the embedding.
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Table 1. Ablation study on the effectiveness of learning global pose features. GN is
the abbreviation of global node. The supervision of the global node is through the
action classification task (100 action classes). Unsupervised GN means the global
node output is directly discarded in the training phase while supervised GN means
the global node is supervised by action labels generated by K-means. All errors are
measured in millimeters (mm).

Method Channels Params MPJPE P-MPJPE Loss

Baseline GCN 205 0.69 M 41.87 33.53 0.000079

GCN (w/ unsupervised GN) 128 0.69 M 41.44 31.83 0.000124

GCN (w/ supervised GN) 128 0.69 M 40.44 31.38 0.000165

Baseline GCN 410 2.71 M 41.73 32.56 0.000036

GCN (w/ unsupervised GN) 256 2.69 M 41.27 31.16 0.000058

GCN (w/ supervised GN) 256 2.69 M 38.72 30.75 0.00009

3.3 Network Architecture

We adopt the network architecture shown in Fig. 4 for 3D HPE. The action
classification is taken as the auxiliary task here. Following Martinez et al. [1] and
Defferrard et al. [33], we stack multiple cascaded blocks, each of which is made
up of two graph convolutional layers interleaved with batch normalization and
ReLU. After that, we wrap every block as a residual block. Both the input and
the output of the GCN are composed of two parts corresponding to local nodes
and the global node, respectively. Specifically, the input is the 2D coordinates of
the body joints and a zero-initialized vector. The output is the 3D body locations
and the pose classification result. The overall loss is a summation of an L2-norm
loss for 3D HPE and another loss for the auxiliary task, i.e., a cross-entropy loss
for action classification and an L2-norm loss for pose embedding.

4 Experiments

4.1 Datasets and Evaluation Protocols

We conduct our experiments on the widely used dataset Human3.6M [34] and
dataset MPI-INF-3DHP [35], and follow the previously used evaluation methods.

Human3.6M. This is the most popular indoor dataset for 3D HPE. It con-
tains 3.6 million images filmed by 4 synchronized high-resolution progressive
scan cameras at 50 Hz [34]. There are 11 subjects in total performing 15 daily
activities such as walking, sitting, greeting and waiting. However, only 7 subjects
are annotated with 3D poses. For fair comparison, we follow previous work [23,
36, 11], i.e. 5 subjects (S1, S5, S6, S7, S8) of the 7 annotated subjects are used
for training while the rest 2 subjects (S9 and S11) are used for testing. We train
and test our GCN models on all 15 actions.
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Table 2. Ablation study on the number of action classes. GN is the abbreviation of
global node. The supervision of the global node is through the action classification

task. The column of Classes indicates different numbers of action classes. Supervised
GN means the global node is supervised by action labels generated by K-means. All
errors are measured in millimeters (mm).

Method Classes Channels Params MPJPE P-MPJPE

GCN (w/ supervised GN) 50 128 0.69 M 40.95 31.67

GCN (w/ supervised GN) 100 128 0.69 M 40.44 31.38

GCN (w/ supervised GN) 200 128 0.71 M 40.25 31.60

GCN (w/ supervised GN) 50 256 2.66 M 40.03 30.98

GCN (w/ supervised GN) 100 256 2.69 M 38.72 30.75

GCN (w/ supervised GN) 200 256 2.74 M 39.82 30.91

Two protocols are widely used for evaluation. Protocol-1 is the mean per-
joint position error (MPJPE), which computes the averaged Euclidean distance
error per joint between the prediction and the corresponding ground truth in
millimeters. Protocol-2 computes the same error after the alignment of the
root joint of the prediction in accordance with the ground truth using a rigid
transformation. The abbreviation of Protocol-2 is P-MPJPE.

MPI-INF-3DHP. This dataset is constructed by the Mocap system, con-
taining both indoor and outdoor scenes with 3D pose annotations. We dismiss its
training set, and only use the test set consisting of 2929 frames from six subjects
conducting seven actions to evaluate the generalization capacity of our model.
The results from this dataset are reported using the metrics 3D PCK and AUC
[35].

4.2 Ablation Study

To avoid the influence of 2D human pose detector, we use 2D ground truth
as the input for local nodes and initialize the global node with a zero vector.
We adopt Adam [37] as the optimization method with an initial learning rate
0.001 and a decay rate 0.96 every 100K iterations. We initialize weights of GCNs
using the method introduced in [38]. Following Zhao et al. [11], we set 128 as
the default number of channels of each graph convolutional layer. We choose
the optimal weight of the auxiliary loss via cross-validation: 0.001 for the cross-
entropy loss used in action classification and 0.0001 for the L2-norm loss used
in pose embedding. Eq. (3) is taken as our baseline GCN.

Learning global pose features.We first merely add a global node (GN) to
our baseline GCN. When training and testing the GCN, there is no supervision
for the global node. Then, we add the auxiliary task of action classification to
supervise the learning of global features. Tab. 1 shows the results. To make sure
that all models have the same number of parameters, we increase the number of
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Fig. 5. The trend of the 3D HPE loss and the validation MPJPE during training.
The number of parameters of each model is approximately 2.69M. Unsupervised

GN means the global node output is directly discarded in the training phase while
supervised GN means the global node is supervised by action labels generated by
K-means.

channels for the baseline GCN. We can see that the baseline GCN has the lowest
regression loss, but its error is higher than other two models. We infer this is
mainly caused by overfitting. In this table, the GCN with a supervised global
node performs the best given the same number of parameters. As we double the
feature channels of hidden layers, the trend is more obvious. Thus, merely adding
a global node could improve the performance of the baseline GCN, especially in
P-MPJPE. With supervision, the GCN with a global node could perform better
both in Protocol-1 and Protocol-2. The results shown in this table verify the
effectiveness of both the global node and its supervision.

Furthermore, we plot the training loss and 3D HPE error descending curves,
as shown in Fig. 5. Here, the training loss corresponds to the 3D HPE part of
total training loss, excluding the loss from the global node. We can see from the
figure that the training loss is becoming higher as we add a global node and
then its supervision. The reason behind this is that adding a global node and
its supervision would increase the importance of the global node, forcing the
model to optimize global features. And we can see from the right-sided figure
that the 3D HPE error is smaller and more stable when we add a global node
and then the global node supervision. These results indicate that learning the
global features and the auxiliary task improves the generalization ability of the
GCN on 3D HPE.

The auxiliary task of action classification. We use action classification
as the auxiliary task to supervise the global node. The output of the global node
is a probability distribution on the action classes. We cluster all 3D poses in the
training set into 50, 100 and 200 action classes, respectively. A larger number of
action classes generally leads to a more difficult classification task. We visualize
some clustering centers in Fig. 6. Obviously, these actions are very different
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Table 3. Ablation study on the embedding dimension.GN is the abbreviation of global
node. The supervision of the global node is through the pose embedding task. The
column of Embedding indicates different embedding feature dimensions. Supervised
GN means the global node is supervised by the reconstruction loss of the embedding.
All errors are measured in millimeters (mm).

Method Embedding Channels Params MPJPE P-MPJPE

GCN (w/ supervised GN) 10 128 0.67 M 40.52 31.42

GCN (w/ supervised GN) 20 128 0.67 M 40.73 31.62

Table 4. Quantitative comparisons on the Human 3.6M dataset under Protocol-1.
The MPJPEs are reported in millimeters. The best results are highlighted in bold.
Legend: (+) uses extra data from MPII dataset. (❸) uses temporal information. (*)
uses pose scales in both training and testing.

Protocol # 1 Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Hossain et al. [7] ECCV’18 (❸) 44.2 46.7 52.3 49.3 59.9 59.4 47.5 46.2 59.9 65.6 55.8 50.4 52.3 43.5 45.1 51.9

Pavllo et al. [36] CVPR’19 (❸) 45.2 46.7 43.3 45.6 48.1 55.1 44.6 44.3 57.3 65.8 47.1 44.0 49.0 32.8 33.9 46.8

Cai et al. [5] ICCV’19 (❸) 44.6 47.4 45.6 48.8 50.8 59.0 47.2 43.9 57.9 61.9 49.7 46.6 51.3 37.1 39.4 48.8

Pavlakos et al. [3] CVPR’17 (*) 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9

Martinez et al. [1] ICCV’17 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9

Tekin et al. [39] ICCV’17 54.2 61.4 60.2 61.2 79.4 78.3 63.1 81.6 70.1 107.3 69.3 70.3 74.3 51.8 63.2 69.7

Yang et al. [20] CVPR’18 (+) 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6

Pavlakos et al. [16] CVPR’18 (+) 48.5 54.4 54.4 52.0 59.4 65.3 49.9 52.9 65.8 71.1 56.6 52.9 60.9 44.7 47.8 56.2

Fang et al. [40] AAAI’18 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4

Zhao et al. [11] CVPR’19 48.2 60.8 51.8 64.0 64.6 53.6 51.1 67.4 88.7 57.7 73.2 65.6 48.9 64.8 51.9 60.8

Sharma et al. [41] ICCV’19 48.6 54.5 54.2 55.7 62.2 72.0 50.5 54.3 70.0 78.3 58.1 55.4 61.4 45.2 49.7 58.0

Ci et al. [23] ICCV’19 (+)(*) 46.8 52.3 44.7 50.4 52.9 68.9 49.6 46.4 60.2 78.9 51.2 50.0 54.8 40.4 43.3 52.7

Ours 48.4 53.6 49.6 53.6 57.3 70.6 51.8 50.7 62.8 74.1 54.1 52.6 58.2 41.5 45.0 54.9

from each other: some of them are sitting while some of them are standing. We
compare the performance of GCNs whose auxiliary task is to classify different
numbers of action categories. The results are shown in Tab. 2. We find that
when the number of feature channels is relatively small, the performance of
these GCNs is robust to the number of action classes. But when the number
of feature channels is doubled, categorizing poses into 100 classes helps the 3D
HPE the most.

The auxiliary task of pose embedding.We also consider pose embedding
as an auxiliary task. The output of the global node is an embedding vector whose
dimension is smaller than that of a 3D pose vector (48 for 16 body joints). In
our experiments, we compare the results obtained by setting the embedding
dimension to 10 and 20, respectively. Tab. 3 shows that the dimension of the
embedding only affects the performance slightly.

Comparing Tab. 2 and Tab. 3, using different auxiliary tasks affects the per-
formance differently. Generally, the auxiliary task of action classification is more
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Table 5. Quantitative comparisons on the Human 3.6M dataset under Protocol-2.
The P-MPJPEs are reported in millimeters. The best results are highlighted in bold.
Legend: (+) uses extra data from MPII dataset. (❸) uses temporal information. (*)
uses pose scales in both training and testing.

Protocol # 2 Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Hossain et al. [7] ECCV’18 (❸) 36.9 37.9 42.8 40.3 46.8 46.7 37.7 36.5 48.9 52.6 45.6 39.6 43.5 35.2 38.5 42.0

Pavllo et al. [36] CVPR’19 (❸) 34.2 36.8 33.9 37.5 37.1 43.2 34.4 33.5 45.3 52.7 37.7 34.1 38.0 25.8 27.7 36.8

Cai et al. [5] ICCV’19 (❸) 35.7 37.8 36.9 40.7 39.6 45.2 37.4 34.5 46.9 50.1 40.5 36.1 41.0 29.6 33.2 39.0

Sun et al. [18] ICCV’17 42.1 44.3 45.0 45.4 51.5 53.0 43.2 41.3 59.3 73.3 51.0 44.0 48.0 38.3 44.8 48.3

Martinez et al. [1] ICCV’17 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7

Fang et al. [40] AAAI’18 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7

Li et al. [9] CVPR’19 35.5 39.8 41.3 42.3 46.0 48.9 36.9 37.3 51.0 60.6 44.9 40.2 44.1 33.1 36.9 42.6

Ci et al. [23] ICCV’19 (+)(*) 36.9 41.6 38.0 41.0 41.9 51.1 38.2 37.6 49.1 62.1 43.1 39.9 43.5 32.2 37.0 42.2

Ours 38.4 41.1 40.6 42.8 43.5 51.6 39.5 37.6 49.7 58.1 43.2 39.2 45.2 32.8 38.1 42.8

Table 6. Quantitative comparisons on the Human 3.6M dataset under Protocol-1. All
approaches take 2D ground truth as input. The MPJPEs are reported in millimeters.
Legend: (+) uses extra data from MPII dataset. (*) uses pose scales in both training
and testing.

Protocol # 1 Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.

Zhou et al. [10] ICCV’19 (+) 34.4 42.4 36.6 42.1 38.2 39.8 34.7 40.2 45.6 60.8 39.0 42.6 42.0 29.8 31.7 39.9

Ci et al. [23] ICCV’19 (+)(*) 36.3 38.8 29.7 37.8 34.6 42.5 39.8 32.5 36.2 39.5 34.4 38.4 38.2 31.3 34.2 36.3

Martinez et al. [1] ICCV’2017 37.7 44.4 40.3 42.1 48.2 54.9 44.4 42.1 54.6 58.0 45.1 46.4 47.6 36.4 40.4 45.5

Zhao et al. [11] CVPR’19 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8

Ours 36.2 40.8 33.9 36.4 38.3 47.3 39.9 34.5 41.3 50.8 38.1 40.1 40.0 30.3 33.0 38.7

beneficial to the task of 3D HPE and the semantic meaning of the global node
output is clear, but we need to generate pseudo action class labels by ourselves.
As for the auxiliary task of pose embedding, it does not require extra generated
labels. However, the output of the global node does not have explicit meanings
and an extra decoder network which is composed of simple fully connected lay-
ers is needed. In addition, the global node output can also be used for other
purposes. For example, it can be pose features for the task of human shape
restoration or action recognition, for which pose information is significant.

4.3 Comparison with the State of the Art

Results on Human3.6M Following Pavllo et al. [36], we use 2D poses pro-
vided by a pre-trained 2D pose detector composed of cascaded pyramid network
(CPN) [42] for benchmark evaluation. We use the GCN with a global node and
an auxiliary task of 100-category action classification due to its overall best per-
formance. We set the initial learning rate as 0.001, the decay factor 0.95 per 4
epochs and the batch size 256. We also apply dropout with a factor of 0.2 for
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Table 7. Quantitative comparisons on the MPI-INF-3DHP dataset. The auxiliary task
for the global node in our method is 100-class pose classification.

Training Data GS noGS Outdoor ALL ALL

(PCK) (PCK) (PCK) (PCK) (AUC)

Martinez et al. [1] H36m 49.8 42.5 31.2 42.5 17.0

Yang et al. [20] H36m+MPII - - - 69.0 32.0

Zhou et al. [17] H36m+MPII 71.1 64.7 72.7 69.2 32.5

Pavlakos et al. [16] H36m+MPII+LSP 76.5 63.1 77.5 71.9 35.3

Ci et al. [23] H36m 74.8 70.8 77.3 74.0 36.7

Wang et al. [12] H36m - - - 71.9 35.8

Li et al. [9] H36m+MPII 70.1 68.2 66.6 67.9 -

Zhou et al. [10] H36m+MPII 75.6 71.3 80.3 75.3 38.0

Ours H36m 79.0 79.3 79.8 79.3 45.9

Fig. 6. These 3D poses are visualized K-means clustering centers when we categorize
poses in the training set of Human3.6M into 50 action classes. Each pose category
roughly represents a typical action, like waving, bending, lying and so on.

each graph convolutional layer. It takes about 4 hours to train our model for
50 epochs on a single GPU of Nvidia RTX 2080Ti. Tab. 4 and Tab. 5 compare
our results and other state-of-the-art results under two protocols, respectively.
In Protocol-1, the 3D pose error of our method is 54.9mm, which is lower than
many recent state of the arts [40, 11, 41]. When trained on ground-truth 2D
poses, our model outperforms other methods [1, 11] by a notable margin, as
shown in Tab. 6. In Protocol-2, our method is comparable with previous state
of the art [23] despite they use extra data from MPII dataset for training and
exploit the information of pose scale in both training and testing. Note that we
do not incorporate any additional modules, such as non-local [11, 5] and pose
refinement [5], to further boost the performance of our method in these two pro-
tocols. In addition, the global node output in our model could be employed for
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Fig. 7. Some qualitative results of our approach on Human3.6M.

follow-on tasks, like action recognition. Some qualitative results of our approach
on Human3.6M dataset are presented in Fig. 7.

Results on MPI-INF-3DHP Following [9], we apply our model trained
on the training set of Human3.6M to the test set of MPI-INF-3DHP. The 2D
joints provided by the dataset are taken as input. Tab. 7 shows the results. As we
can see from the table, our method outperforms other recent methods in “GS”
and “noGS”. Though [10] has slightly higher PCK in “Outdoor”, overall our
method achieves the best performance in contrast with previous state of the arts
[23, 10, 16, 9] which attempt to address the generalization issue across different
datasets. Notably, some of them even use more than one dataset to train their
models. Since our model has not seen any pose contained in MPI-INF-3DHP,
the results validate the generalization capacity of our model to new datasets.

5 Conclusion

In this paper, we introduce a novel 3D HPE approach by learning global pose
features for 3D HPE. We also propose a heterogeneous multi-task learning frame-
work to facilitate the learning of global features. With extensive ablation study
and benchmark comparison, we make the following conclusions. (1) A global
node is beneficial to GCNs for 3D HPE. (2) With supervision, a global node
could learn global features better. (3) Both auxiliary pose classification and
pose embedding are helpful to the supervision of a global node.
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