
Two-phase IO Enabling Large-scale Performance 
Introspection

Ke Fan (kfan23@uic.edu),  Sidharth Kumar (sidharth@uic.edu)

Background

Add your information, graphs and 
images to this section.

End-to-end Performance Introspection Framework Case Study

Conclusion
Challenges

Performance analysis tools are essential to help HPC experts: 

An end-to-end Performance analysis framework often consists of a profiling 
tool and a visualization tool.

The challenges of profiling and visualizing large-scale parallel programs: 

To address them, we proposed an end-to-end  framework — Viveka:

A profiling tool typically runs on supercomputers, while a visualization tool 
typically runs on individual computers.

1
2

The parallel profiling includes: 1) source-code annotation API, 2) a runtime 
system, and 3) parallel I/O.  
Our main innovation is in developing a scalable low-overhead runtime.

6

Profiling Tool:

Visualization Tool:

Snapshot the entire state of performance metric every 𝑛 seconds

The profiles are written in 
a customized compact file 

format that reduces all 
redundancies to minimize 

the size of the profiles.

Designing the visualization tool to be highly 
interactive to increase users’ cognitive load 
while enabling feedback-driven analysis.

Linked Views

Designing it to strike a balance 
between providing complex 

features and operating efficiently 
at high process counts.

1

2

La
zy

 L
oa

di
ng Employing lazy loading for data processing, which 

identifies resources as non-blocking and loads 
them only when needed.3

The profiling API with necessary parameters: 

• Viveka:: Profiler(string filename,  double 
io_frequency = 0, int file_count);

• Viveka:: Event(string event_name, bool 
is_common = 1);

• Viveka::~Event();

• bool Viveka::flush();

Two-phase IO

The generated profiles can then be read by the visualization tool.

Before the two-phase I/O, we perform an event 
synchronization phase across all processes to 
synchronize the non-common events.

The screenshot of visualizing a parallel IO application: 

Load-balance study: 

vs.

Process view demonstrating 
the impact of balanced data 

aggregation phase. In 
unbalanced data aggregation 

(a), there are aggregator 
(strangler-) processes that 
must write extra data and 

therefore slow down the entire 
application.

Experiments
All our experiments are performed on the Theta supercomputer at 
the Argonne Leadership Computing Facility (ALCF). 

The experiments for two-phase I/O with varying aggregators (P is 
number of total processes):

Y-axis is the time taken for the whole program, and x-axis is the number of 
selected aggregators (= the number of output files). 
From the results, the program with P/16 aggregators consistently outperforms 
others.

Experiments

We compare the output sizes of Viveka and Caliper with the same program 
running in the same environment. The output format is tool-specific.

The profiles in our compact format result in the smallest size.

In this paper, we presented Viveka, a lightweight end-to-end system 
for profiling and visualizing the performance of MPI-based 
applications.  

• A simple data format for the generated logs that minimizes meta data, 
leading to a smaller storage footprint and faster load times. (on average 3x 
lightweight than Caliper). 

• Developed a custom two-phase data aggregation system to scale parallel I/
O (of performance data) to high core counts, ensuring minimal overhead. 

• A lightweight web-based visualization dashboard that is capable of 
performing interactive analysis of performance data collected at high 
process counts. 

• A case study on real parallel applications to demonstrate the efficacy of our 
profiling and visualization system.

We executed the whole program n time repeatedly (ranging from 10 to 50) to 
test the cost of our performance tool. 

From the results, we can see our cost is lower than 5% even for long 
executions (about 5 mins).

Acknowledgements

This work was funded in part by NSF RII Track-4 award 2132013, NSF 
PPoSS planning award 2217036, NSF PPoSS large award 2316157 and, NSF 
collaborative research award 2221811. We thank the ALCF's Directors 
Discretionary (DD) program for offering us the compute hours to run our 
experiments on the Theta Supercomputer. 

mailto:kfan23@uic.edu
mailto:sidharth@uic.edu

